精英家教网 > 高中数学 > 题目详情
20.已知△ABC中,a=4,b+c=5,tanA+tanB+$\sqrt{3}$=$\sqrt{3}$tanAtanB,求△ABC的面积.

分析 由条件利用两角和的正切公式求得tan(A+B)=-$\sqrt{3}$,可得C=$\frac{π}{3}$,再利用余弦定理求得b、c的值,从而求得△ABC的面积为$\frac{1}{2}$•ab•sinC的值.

解答 解:△ABC中,∵tanA+tanB+$\sqrt{3}$=$\sqrt{3}$tanAtanB,∴tanA+tanB=$\sqrt{3}$(tanAtanB-1),
tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$=-$\sqrt{3}$,∴A+B=$\frac{2π}{3}$,∴C=$\frac{π}{3}$.
再由a=4,b+c=5,利用余弦定理可得 cosC=$\frac{1}{2}$=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{16+5(b-c)}{8b}$,可得5c-b=16,
∴b=$\frac{3}{2}$,c=$\frac{7}{2}$,∴△ABC的面积为$\frac{1}{2}$•ab•sinC=$\frac{3\sqrt{3}}{2}$.

点评 本题主要考查两角和的正切公式、余弦定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,已知平行四边形ABCD与直角梯形ABEF所在的平面互相垂直,且AB=BE=$\frac{1}{2}$AF=1,BE∥AF,AB⊥AF,∠CBA=$\frac{π}{4}$,BC=$\sqrt{2}$,P为DF的中点.
(1)求证:PE∥平面ABCD;
(2)求三棱锥A-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}是等差数列.若a9+a12>0,a10•a11<0,其数列{an}的前n项和Sn有最大值,那么当Sn取得最大值时,n等于10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若x2-2lnx≥2px-$\frac{1}{x{\;}^{2}}$任意x∈(0,1]恒成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(n)=($\frac{1+i}{1-i}$)n+($\frac{1-i}{1+i}$)n(n∈N*),则集合{x|x=f(n)}的子集有(  )
A.2个B.4个C.8个D.无穷多个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求证:当下列不等式组成立时,角θ为第三象限角,反之也对.
$\left\{\begin{array}{l}{sinθ<0}\\{tanθ>0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\frac{lnx+1}{x}$,
(Ⅰ)求函数f(x)的单调区间,并判断是否有极值;
(Ⅱ)若对任意的x>1,恒有ln(x-1)+k+1≤kx成立,求k的取值范围;
(Ⅲ)证明:$\frac{ln2}{2^2}+\frac{ln3}{3^2}+…+\frac{lnn}{n^2}<\frac{{2{n^2}-n-1}}{4(n+1)}$(n∈N+,n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,M为棱AC中点.AB=BC,AC=2,AA1=$\sqrt{2}$.
(Ⅰ)求证:B1C∥平面A1BM;
(Ⅱ)求证:AC1⊥平面A1BM;
(Ⅲ)在棱BB1的上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时$\frac{BN}{{B{B_1}}}$的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.曲线y=$\sqrt{x}$+lnx在x=1处的切线的斜率是$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案