分析 由条件利用两角和的正切公式求得tan(A+B)=-$\sqrt{3}$,可得C=$\frac{π}{3}$,再利用余弦定理求得b、c的值,从而求得△ABC的面积为$\frac{1}{2}$•ab•sinC的值.
解答 解:△ABC中,∵tanA+tanB+$\sqrt{3}$=$\sqrt{3}$tanAtanB,∴tanA+tanB=$\sqrt{3}$(tanAtanB-1),
tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$=-$\sqrt{3}$,∴A+B=$\frac{2π}{3}$,∴C=$\frac{π}{3}$.
再由a=4,b+c=5,利用余弦定理可得 cosC=$\frac{1}{2}$=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{16+5(b-c)}{8b}$,可得5c-b=16,
∴b=$\frac{3}{2}$,c=$\frac{7}{2}$,∴△ABC的面积为$\frac{1}{2}$•ab•sinC=$\frac{3\sqrt{3}}{2}$.
点评 本题主要考查两角和的正切公式、余弦定理的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2个 | B. | 4个 | C. | 8个 | D. | 无穷多个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com