精英家教网 > 高中数学 > 题目详情
3.已知a为锐角,且7sinα=2cos2α,则sin(α+$\frac{π}{3}$)=(  )
A.$\frac{{1+3\sqrt{5}}}{8}$B.$\frac{{1+5\sqrt{3}}}{8}$C.$\frac{{1-3\sqrt{5}}}{8}$D.$\frac{{1-5\sqrt{3}}}{8}$

分析 由已知得4sin2α+7sinα-2=0,从而求出sinα=$\frac{1}{4}$,cosα=$\frac{\sqrt{15}}{4}$,再由sin(α+$\frac{π}{3}$)=sin$αcos\frac{π}{3}+cosαsin\frac{π}{3}$,能求出结果.

解答 解:∵α为锐角,且7sinα=2cos2α,
∴7sinα=2(1-2sin2α),
∴4sin2α+7sinα-2=0,
∴sinα=-2(舍)sinα=$\frac{1}{4}$,
∴cosα=$\sqrt{1-(\frac{1}{4})^{2}}$=$\frac{\sqrt{15}}{4}$,
∴sin(α+$\frac{π}{3}$)=sin$αcos\frac{π}{3}+cosαsin\frac{π}{3}$
=$\frac{1}{4}×\frac{1}{2}+\frac{\sqrt{15}}{4}×\frac{\sqrt{3}}{2}$
=$\frac{1+3\sqrt{5}}{8}$.
故选:A.

点评 本题考查三弦值的求法,是中档题,解题时要认真审题,注意同角三角函数关系式、正弦加法定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=2px(p>0),抛物线的焦点为F,过点F的直线交C于A,B两点,线段AB的垂直平分线交x轴于点R.
(I)若对数函数y=lgx图象经过点F,求抛物线C方程;
(II)$\frac{|AB|}{|BF|}$恒为定值吗?如果是,求出该值,如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=log2(sin($\frac{π}{3}$x+$\frac{π}{3}$))
(1)求函数的定义域与单调递减区间;
(2)令$h(x)=sin(\frac{π}{3}x+\frac{π}{3})$,求h(1)+h(3)+h(5)+h(7)+…+h(2013)+h(2015)的值;
(3)g(x)=4f(x)+2f(x)+1,求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1e2+1的取值范围是($\frac{4}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,第一、第二象限不同点的个数为14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题p:x1和x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:不等式ax2+2x-1>0有解.若p∧q是假命题,¬p也是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=f(x)(x∈[a,b])的图象与直线x=2015的交点个数是(  )
A.至多有一个B.至少有一个C.有且仅有一个D.有无数个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.观察程序框图如图所示.若a=5,则输出b=26.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某种家用电器能使用三年的概率为0.8,能使用四年的概率为0.4,已知某一这种家用电器已经使用了三年,则它能够使用到四年的概率为(  )
A.0.32B.0.4C.0.5D.0.6

查看答案和解析>>

同步练习册答案