精英家教网 > 高中数学 > 题目详情
8.在高中学习过程中,同学们经常这样说“如果物理成绩好,那么学习数学就没什么问题”某班针对“高中生物理对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:
编号
成绩
12345
物理(x)9085746863
数学(y)1301251109590
(1)求数学y成绩关于物理成绩x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$(b精确到0.1),若某位学生的物理成绩为80分时,预测他的物理成绩.
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.
(参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}n\stackrel{-2}{x}}$,$\stackrel{∧}{a}$=$\overline{y}$b$\overline{x}$,)参考数据:902+852+742+682+632=29394
90×130+85×125+74×110+68×95+63×90=42595.

分析 (1)根据表中数据计算$\overline{x}$、$\overline{y}$,求出回归系数$\widehat{b}$、$\widehat{a}$,写出回归方程,
利用回归方程计算x=80时$\widehat{y}$的值即可;
(2)抽取的五位学生中成绩高于100分的有3人,X的可以取1,2,3,
计算对应的概率值,写出X的分布列,计算数学期望值.

解答 解:(1)根据表中数据计算$\overline{x}$=$\frac{1}{5}$×(90+85+74+68+63)=76,
$\overline{y}$=$\frac{1}{5}$×(130+125+110+95+90)=110,
$\sum_{i=5}^{5}$${{x}_{i}}^{2}$=902+852+742+682+632=29394,
$\sum_{i=1}^{5}$xiyi=90×130+85×125+74×110+68×95+63×90=42595,
$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{42595-5×76×110}{29394-5{×76}^{2}}$=$\frac{795}{514}$≈1.5,
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=110-1.5×76=-4;
∴x、y的线性回归方程是$\widehat{y}$=1.5x-4,
当x=80时,$\widehat{y}$=1.5×80-4=116,
即某位同学的物理成绩为80分,预测他的数学成绩是116;
(2)抽取的五位学生中成绩高于100分的有3人,
X表示选中的同学中高于100分的人数,可以取1,2,3,
P(X=1)=$\frac{{C}_{3}^{1}{•C}_{2}^{2}}{{C}_{5}^{3}}$=$\frac{3}{10}$,P(X=2)=$\frac{{C}_{3}^{2}{•C}_{2}^{1}}{{C}_{5}^{3}}$=$\frac{3}{5}$,
P(X=3)=$\frac{{C}_{3}^{3}{•C}_{2}^{0}}{{C}_{5}^{3}}$=$\frac{1}{10}$;
故X的分布列为:

X123
p$\frac{3}{10}$$\frac{3}{5}$$\frac{1}{10}$
X的数学期望值为E(X)=1×$\frac{3}{10}$+2×$\frac{3}{5}$+3×$\frac{1}{10}$=1.8.

点评 本题考查了线性回归方程的应用问题,也考查了离散型随机变量的分布列和期望问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a2-a-2b-2c=0且a+2b-2c+3=0.则△ABC中最大角的度数是120°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.F1、F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,O为坐标原点,若双曲线左支上存在一点P,使($\overrightarrow{OP}$+$\overrightarrow{O{F}_{1}}$)•($\overrightarrow{{F}_{2}P}$-$\overrightarrow{{F}_{2}{F}_{1}}$)=0,且|$\overrightarrow{P{F}_{2}}$|=3|$\overrightarrow{P{F}_{1}}$|,则此双曲线的离心率为$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过抛物线C:x2=4y的焦点F作直线l交抛物线C于A、B两点,若|AB|=5,则线段AB中点的纵坐标为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-ax+ln(x+1)(a∈R).
(Ⅰ)当a=2时,求函数f(x)的极值点;
(Ⅱ)若函数f(x)在区间(0,1)上恒有f′(x)>x,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正方体ABCD-A1B1C1D1,点E,F,G分别是线段B1B,AB和A1C上的动点,观察直线CE与D1F,CE与D1G.给出下列结论:
①对于任意给定的点E,存在点F,使得D1F⊥CE;
②对于任意给定的点F,存在点E,使得CE⊥D1F;
③对于任意给定的点E,存在点G,使得D1G⊥CE;
④对于任意给定的点G,存在点E,使得CE⊥D1G.
其中正确结论的个数是(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=sin(2x+$\frac{π}{4}$)(x∈[0,$\frac{9π}{8}$]),若方程f(x)=a恰好有三个根,分别为x1,x2,x3(x1<x2<x3),则x1+x2+x3的取值范围是(  )
A.[$\frac{9π}{8}$,$\frac{5π}{4}$)B.[$\frac{5π}{4}$,$\frac{11π}{8}$)C.[$\frac{3π}{2}$,$\frac{13π}{8}$)D.[$\frac{7π}{4}$,$\frac{15π}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在等差数列中,a1=25,d=-4,前n项的和为Sn,则Sn最大值为364.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.点A(3,1)和点A关于点$(-\frac{1}{2},\frac{7}{2})$的对称点B都在直线3x-2y+a=0的同侧,则a的取值范围是(-∞,-7)∪(24,+∞).

查看答案和解析>>

同步练习册答案