精英家教网 > 高中数学 > 题目详情
11.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求二面角D1-EC-D的余弦值.

分析 (1)通过证明A1D⊥平面AD1E,得出D1E⊥A1D;
(2)利用勾股定理证明CE⊥DE,通过证明CE⊥平面DD1E得出CE⊥D1E,故∠D1ED为二面角D1-EC-D的平面角,在Rt△DD1E中求出cos∠D1ED.

解答 (1)证明:∵AE⊥平面ADD1A1,A1D?平面ADD1A1
∴AE⊥A1D,
∵四边形ADD1A1是矩形,AD=AA1
∴四边形ADD1A1是正方形,∴A1D⊥AD1
又AD1?平面AD1E,AE?平面AD1E,AD1∩AE=A,
∴A1D⊥平面AD1E,又D1E?平面平面AD1E,
∴D1E⊥A1D.
(2)连结DE.
∵DD1⊥平面ABCD,CE?平面ABCD,
∴CE⊥DD1
∵AD=AE=BC=BE=1,CD=AB=2,
∴DE=CE=$\sqrt{2}$,
∴DE2+CE2=CD2
∴CE⊥DE.
又DD1?DD1E,DE?平面DD1E,DD1∩DE=D,
∴CE⊥平面DD1E,又D1E?平面DD1E,
∴CE⊥D1E,
∴∠D1ED为二面角D1-EC-D的平面角,
∵D1E=$\sqrt{D{{D}_{1}}^{2}+D{E}^{2}}$=$\sqrt{3}$,
∴cos∠D1ED=$\frac{DE}{{D}_{1}E}$=$\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}$.

点评 本题考查了线面垂直的判定与性质,二面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在△ABC中,三个内角A,B,C的对边分别是a.b.c,已知B=30°,c=150,b=50$\sqrt{3}$,那么这个三角形是(  )
A.等边三角形B.等腰三角形
C.直角三角形D.等腰三角或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点M(x,y)到点F(2,0)的距离与定直线x=$\frac{5}{2}$的距离之比为$\frac{2\sqrt{5}}{5}$,设点M的轨迹为曲线E
(Ⅰ)求曲线E的方程;
(Ⅱ)设F关于原点的对称点为F′,是否存在经过点F的直线l交曲线E与A、B两点,使得△F′AB的面积为$\sqrt{5}$?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{{\begin{array}{l}{\frac{3}{x-1}}&{(x≥2)}\\{|{2^x}-1|}&{(x<2)}\end{array}}$,若函数g(x)=f(x)-k有三个零点,则实数k的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{{{4^x}+2}}$.
(1)求证:f(x)+f(1-x)=$\frac{1}{2}$;
(2)设数列{an}满足an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)+f(1),求an
(3)设数列{an}的前项n和为Sn,若Sn≥λan(n∈N*)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某种产品的广告费支出x与销售额 y(单位:百万元)之间有如表对应数据:
x24568
y3040506070
(Ⅰ)请画出上表数据的散点图.
(Ⅱ)请根据如表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+x,并估计广告支出1千万元时的销售额
(参考数值:2×30+4×40+5×50+6×60+8×70═1390)
参考公式.
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{\;}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$\overrightarrow{m}$=(cosα,sinα),$\overrightarrow{n}$=(4,3),α∈(-$\frac{π}{2}$,$\frac{π}{2}$),若$\overrightarrow{m}$∥$\overrightarrow{n}$,则cos(α-$\frac{π}{2}$)=(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知曲线C1的参数方程为$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}$(φ为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4$\sqrt{3}$cosθ.
(Ⅰ)求C1与C2交点的直角坐标;
(Ⅱ)已知曲线C3的参数方程为$\left\{{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}}\right.$(0≤α<π,t为参数,且t≠0),C3与C1相交于点P,C2与C3相交于点Q,且|PQ|=8,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知项数相同的等比数列{an}和{bn},公比为q1,q2(q1,q2≠1),则下列数列①{3an};②{$\frac{2}{{a}_{n}}$};③{3${\;}^{{a}_{n}}$};④{2an-3bn};⑤{2an•3bn}中为等比数列的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案