精英家教网 > 高中数学 > 题目详情
3.若函数$f(x)=\sqrt{a{x^2}+bx+c}$(a,b,c∈R)的定义域和值域分别为集合A,B,且集合{(x,y)|x∈A,y∈B}表示的平面区域是边长为1的正方形,则b+c的最大值为5.

分析 求出集合A,B,因为{(x,y)|x∈A,y∈B}表示的平面区域是边长为1的正方形,所以$\frac{{\sqrt{{b^2}-4ac}}}{-a}=\sqrt{\frac{{4ac-{b^2}}}{4a}}=1$,可得a=-4,b2+16c=16,$c=1-\frac{b^2}{16}$,即可求出b+c的最大值.

解答 解:由题可知,a<0,b2-4ac>0,则$A=[{\frac{{-b+\sqrt{{b^2}-4ac}}}{2a},\;\;\frac{{-b-\sqrt{{b^2}-4ac}}}{2a}}]$,$B=[{0,\;\;\sqrt{\frac{{4ac-{b^2}}}{4a}}}]$,
因为{(x,y)|x∈A,y∈B}表示的平面区域是边长为1的正方形,所以$\frac{{\sqrt{{b^2}-4ac}}}{-a}=\sqrt{\frac{{4ac-{b^2}}}{4a}}=1$,
可得a=-4,b2+16c=16,$c=1-\frac{b^2}{16}$,所以$b+c=-\frac{b^2}{16}+b+1=-\frac{1}{16}{(b-8)^2}+5$,当b=8时有最大值5.
故答案为5.

点评 本题考查函数的定义域、值域的求法,考查配方法的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知F1,F2是双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=$\frac{1}{3}$,则E的离心率为(  )
A.2B.$\frac{3}{2}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~250为重度污染;>300为严重污染.一环保人士记录2017年某地某月10天的AQI的茎叶图如下.
(1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天计算)
(2)若从样本中的空气质量不佳(AQI>100)的这些天,随机地抽取两天深入分析各种污染指标,求这该两天的空气质量等级恰好不同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x2-a|,g(x)=x2-ax,a∈R.
(Ⅰ)当a=1时,求f(x)在区间[-1,1]上的最大值;
(Ⅱ)求f(x)在区间[-1,1]上的最大值M(a)的最小值;
(Ⅲ)若关于x的方程f(x)+g(x)=0在(0,2)上有两个解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某四棱锥的三视图如图所示,该四棱锥外接球的表面积是(  )
A.B.C.12πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\frac{c}{b-a}=\frac{sinA+sinB}{sinA+sinC}$.
(1)求角B的大小;
(2)若b=$2\sqrt{2}$,a+c=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}为等差数列,且满足a1+a5=90.若(1-x)m展开式中x2项的系数等于数列{an}的第三项,则m的值为(  )
A.6B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1的左、右焦点分别为F1、F2,直线l经过F1椭圆于A,B两点,则△ABF2的周长为20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若实数x,y满足$\left\{\begin{array}{l}{2x-y+2≥0}&{\;}\\{2x+y-6≤0}&{\;}\\{0≤y≤3}&{\;}\end{array}\right.$,且z=mx-y(m<2)的最小值为-$\frac{5}{2}$,则m=-1.

查看答案和解析>>

同步练习册答案