精英家教网 > 高中数学 > 题目详情
16.已知f(x)=ax-lnx,x∈(0,e],其中e是自然常数,a∈R.
(1)当a=1时,求f(x)的极值;
(2)若f(x)的最小值为3,求a的值.

分析 (1)当a=1时,f(x)=x-lnx,x∈(0,e],f′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$.利用导数研究函数的单调性即可得出极值与最值.
(2)f′(x)=a-$\frac{1}{x}$=$\frac{ax-1}{x}$.x∈(0,e].对a分类讨论:①a≤0时;②a>0时,f′(x)=$\frac{a(x-\frac{1}{a})}{x}$.x∈(0,e].$0<a≤\frac{1}{e}$时,$a>\frac{1}{e}$时,利用导数研究函数的单调性即可得出极值与最值即可得出.

解答 解:(1)当a=1时,f(x)=x-lnx,x∈(0,e],
f′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$.
当0<x<1时,f′(x)<0,此时函数f(x)单调递减;当1<x≤e时,f′(x)>0,此时函数f(x)单调递增.
∴当x=1时,函数f(x)取得极小值,f(1)=1.
(2)f′(x)=a-$\frac{1}{x}$=$\frac{ax-1}{x}$.x∈(0,e].
①a≤0时,f′(x)<0,此时函数f(x)在(0,e]上单调递减.
∴x=e时函数f(x)取得最小值,f(e)=ae-1=3,解得a=$\frac{4}{e}$>0,舍去.
②a>0时,f′(x)=$\frac{a(x-\frac{1}{a})}{x}$.x∈(0,e].
$0<a≤\frac{1}{e}$时,$\frac{1}{a}$≥e.f′(x)≤0,此时函数f(x)在(0,e]上单调递减.
∴x=e时函数f(x)取得最小值,f(e)=ae-1=3,解得a=$\frac{4}{e}$>0,舍去.
$a>\frac{1}{e}$时,0<$\frac{1}{a}$<e,可得函数f(x)在(0,$\frac{1}{a}$]上单调递减,在$(\frac{1}{a},e]$上单调递增.
∴x=$\frac{1}{a}$时函数f(x)取得最小值,f($\frac{1}{a}$)=1+lna=3,解得a=e2>$\frac{1}{e}$,满足条件.
综上可得:a=e2

点评 本题考查了利用导数研究函数的单调性极值与最值、分类讨论方法、不等式的解法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知点P(cosα,sinα)在直线 y=-3x上,则tan(α-$\frac{π}{4}$)=2;$\frac{1+cos2α}{sin2α}$=$-\frac{1}{3}$;sin2α+5sinα•cosα=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.小王参加单位组织的乒乓球比赛,在小组赛中将进行三场比赛,假设小王在第一场比赛中获胜的概率为$\frac{4}{5}$,第二、第三场获胜的概率为m,n(m>n),且不同比赛场次是否获胜相互独立.记ξ为小王取得比赛胜利的次数且P(ξ=0)=$\frac{6}{125}$,P(ξ=3)=$\frac{24}{125}$
(1)求m,n的值;
(2)求数学期望Eξ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex-ax-1(e为自然对数的底数).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当a>0时,若f(x)≥0对任意的x∈R恒成立,求实数a的值;
(Ⅲ)求证:$ln[{1+\frac{2×3}{{{{(3-1)}^2}}}}]+ln[{1+\frac{{2×{3^2}}}{{{{({3^2}-1)}^2}}}}]+…+ln[{1+\frac{{2×{3^n}}}{{{{({3^n}-1)}^2}}}}]<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C所对的边分别为a,b,c,若a2+c2=b2+$\sqrt{2}$ac.
(1)求B的大小;
(2)求$\sqrt{2}$cosA+cosC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2+$\frac{4}{{x}^{2}}$.
(1)求证:f(x)是偶函数;
(2)判断函数f(x)在(0,$\sqrt{2}$)和($\sqrt{2}$,+∞)上的单调性并用定义法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系中,定点M(1,0),两动点A,B在双曲线x2-3y2=3的右支上,则cos∠AMB的最小值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,x<0}\\{-\frac{1}{x},x>0}\end{array}\right.$若函数f(x)的图象在点A,B处的切线重合,则实数a的取值范围是(  )
A.(2,+∞)B.(-∞,$\frac{1}{4}$)C.(-2,$\frac{1}{4}$)D.(-∞,-2)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθ=a(a>0),Q为l上一点,以OQ为边作等边三角形OPQ,且O、P、Q三点按逆时针方向排列.
(Ⅰ)当点Q在l上运动时,求点P运动轨迹的直角坐标方程;
(Ⅱ)若曲线C:x2+y2=a2,经过伸缩变换$\left\{\begin{array}{l}{x′=2x}\\{y′=y}\end{array}\right.$得到曲线C′,试判断点P的轨迹与曲线C′是否有交点,如果有,请求出交点的直角坐标,没有则说明理由.

查看答案和解析>>

同步练习册答案