分析 (I)由新定义易得h(x)的解析式;
(II)由(I)得$x∈[\frac{π}{6},\frac{π}{2}]$时,h(x)=$2sin(2x+\frac{π}{6})+1$,由三角函数可得h(x)-1的最小值为-1,由恒成立可得m的范围;
(III)令 $f(x)=sinx+cosx,α=\frac{π}{2}$,或令 $f(x)=1+\sqrt{2}sinx,α=π$,验证可得.
解答 解:(I)由题意可得$h(x)=\left\{\begin{array}{l}2cosx(\sqrt{3}sinx+cosx),x≥0\\ 2cosx,x<0\end{array}\right.$,
(II)由(I)得$x∈[\frac{π}{6},\frac{π}{2}]$时,$h(x)=2\sqrt{3}sinxcosx+2{cos^2}x$
=$\sqrt{3}sin2x+cos2x+1$=$2sin(2x+\frac{π}{6})+1$,
∵$\frac{π}{6}≤x≤\frac{π}{2}$,∴$\frac{π}{2}≤2x+\frac{π}{6}≤\frac{7π}{6}$,∴$-\frac{1}{2}≤sin(2x+\frac{π}{6})≤1$
∴-1≤h(x)-1≤2,即h(x)-1的最小值为-1,
又h(x)-1-m≥0恒成立,∴m≤-1;
(III)令 $f(x)=sinx+cosx,α=\frac{π}{2}$
则$g(x)=f(x+\frac{π}{2})=sin(x+\frac{π}{2})+cos(x+\frac{π}{2})=cosx-sinx$
∴$h(x)=f(x)f(x+\frac{π}{2})=(sinx+cosx)(cosx-sinx)=cos2x$.
另解:令 $f(x)=1+\sqrt{2}sinx,α=π$,
则 $g(x)=f(x+π)=1+\sqrt{2}sin(x+π)=1-\sqrt{2}sinx$
于是$h(x)=f(x)f(x+π)=(1+\sqrt{2}sinx)(1-\sqrt{2}sinx)=cos2x$.
点评 本题考查函数与方程的综合应用,涉及三角函数和新定义,属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 6 | C. | 5 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{9}$ | C. | -$\frac{1}{9}$ | D. | -$\frac{5}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 10 | C. | 12 | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com