3£®ÒÑ֪˫ÇúÏßC£º$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊΪ$\sqrt{3}$£¬ÓÒ×¼Ïß·½³ÌΪx=$\frac{{\sqrt{3}}}{3}$
£¨¢ñ£©ÇóË«ÇúÏßCµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlÊÇÔ²O£ºx2+y2=r2É϶¯µãP£¨x0£¬y0£©£¨x0y0¡Ù0£©´¦µÄÇÐÏߣ¬lÓëË«ÇúÏßC½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬ÊÇ·ñ´æÔÚʵÊýrʹµÃ¡ÏAOBʼÖÕΪ90¡ã£®Èô´æÔÚ£¬Çó³örµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÀûÓÃÀëÐÄÂÊΪ$\sqrt{3}$£¬ÓÒ×¼Ïß·½³ÌΪx=$\frac{{\sqrt{3}}}{3}$£¬Áгö·½³Ì×飬Çó³öa£¬c£¬b£¬¼´¿ÉÇó½âË«ÇúÏߵķ½³Ì£®
£¨¢ò£©µãP£¨x0£¬y0£©£¨x0y0¡Ù0£©ÔÚÔ²x2+y2=r2ÉÏ£¬µÃµ½ÇÐÏß·½³Ì£¬ÓëË«ÇúÏßÁªÁ¢£¬ÀûÓÃΤ´ï¶¨Àí½áºÏÏòÁ¿µÄÊýÁ¿»ý£¬Çó½â¼´¿É£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒ⣬µÃ$\left\{{\begin{array}{l}{\frac{a^2}{c}=\frac{{\sqrt{3}}}{3}}\\{\frac{c}{a}=\sqrt{3}}\end{array}}\right.$£¬½âµÃ$a=1£¬c=\sqrt{3}$£¬
¡àb2=c2-a2=2£¬¡àËùÇóË«ÇúÏßCµÄ·½³ÌΪ${x^2}-\frac{y^2}{2}=1$£®¡­..£¨4·Ö£©
£¨¢ò£©µãP£¨x0£¬y0£©£¨x0y0¡Ù0£©ÔÚÔ²x2+y2=r2ÉÏ£¬
Ô²ÔÚµãP£¨x0£¬y0£©´¦µÄÇÐÏß·½³ÌΪ$y-{y_0}=-\frac{x_0}{y_0}£¨x-{x_0}£©$£¬
»¯¼òµÃ$x{x_0}+y{y_0}={r^2}$£®¡­..£¨5·Ö£©
ÓÉ$\left\{{\begin{array}{l}{{x^2}-\frac{y^2}{2}=1}\\{x{x_0}+y{y_0}={r^2}}\end{array}}\right.$ÏûÈ¥yµÃ$£¨2y_0^2-x_0^2£©{x^2}+2{r^2}{x_0}x-{r^4}-2y_0^2=0$¢Ù$£¨2y_0^2-x_0^2£©{y^2}-4{r^2}{y_0}y+2{r^4}-2x_0^2=0$¢Ú¡­..£¨8·Ö£©
Èô´æÔÚʵÊýr Ê¹µÃ¡ÏAOBʼÖÕΪ900ÔòÓÐ$\overrightarrow{OA}•\overrightarrow{OB}={x_1}{x_2}+{y_1}{y_2}=0$£¬
¶ø${x_1}{x_2}=\frac{{-{r^4}-2y_0^2}}{2y_0^2-x_0^2}$£¬${y_1}{y_2}=\frac{{2{r^4}-2x_0^2}}{2y_0^2-x_0^2}$ÓÖ$x_0^2+y_0^2={r^2}$£¬
x1x2+y1y2=$\frac{{-{r^4}-2y_0^2}}{2y_0^2-x_0^2}+$$\frac{{2{r^4}-2x_0^2}}{2y_0^2-x_0^2}$=$\frac{{{r^4}-2{r^2}}}{2y_0^2-x_0^2}$=0£¬
$r=\sqrt{2}$¡­..£¨10·Ö£©
¶ø$r=\sqrt{2}$ʱ¢Ù»¯Îª$£¨3x_0^2-4£©{x^2}-4{x_0}x+8-2x_0^2=0$£¬x0y0¡Ù0£¬
$0£¼x_0^2£¼2$£¬
$¡÷=16x_0^2-4£¨3x_0^2-4£©£¨8-2x_0^2£©£¾0$£¬
×ÛÉÏËùÊö´æÔÚ$r=\sqrt{2}$ʹµÃ¡ÏAOBʼÖÕΪ90¡ã¡­..£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éË«ÇúÏß·½³ÌµÄÇ󷨣¬Ö±ÏßÓëË«ÇúÏßµÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㮿¼²é´æÔÚÐÔÎÊÌâµÄÇó½â·½·¨£¬¿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬×ª»¯Ë¼ÏëµÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¶Ô¶¨ÒåÓò·Ö±ðÊÇDf¡¢DgµÄº¯Êýy=f£¨x£©£¬y=g£¨x£©£¬
¶¨ÒåÒ»¸öº¯Êýh£¨x£©£ºh£¨x£©=$\left\{\begin{array}{l}{f£¨x£©g£¨x£©£¬µ±x¡Ê{D}_{f}ÇÒx¡Ê{D}_{g}}\\{f£¨x£©£¬µ±x¡Ê{D}_{f}ÇÒx∉{D}_{g}}\\{g£¨x£©£¬µ±x∉{D}_{f}ÇÒx¡Ê{D}_{g}}\end{array}\right.$
£¨1£©Èôf£¨x£©=$\sqrt{3}$sinx+cosx£¨x¡Ý0£©£¬g£¨x£©=2cosx£¨x¡ÊR£©£¬Ð´³öº¯Êýh£¨x£©µÄ½âÎöʽ£»
£¨2£©ÔÚ£¨I£©µÄÌõ¼þÏ£¬Èô$x¡Ê[\frac{¦Ð}{6}£¬\frac{¦Ð}{2}]$ʱ£¬h£¨x£©-1-m¡Ý0ºã³ÉÁ¢£¬ÇómµÄȡֵ·¶Î§£»
£¨3£©Èôg£¨x£©=f£¨x+¦Á£©£¬ÆäÖЦÁÊdz£Êý£¬ÇÒ¦Á¡Ê[0£¬¦Ð]£¬ÇëÉè¼ÆÒ»¸ö¶¨ÒåÓòΪRµÄº¯Êýy=f£¨x£©£¬¼°Ò»¸ö¦ÁµÄÖµ£¬Ê¹µÃh£¨x£©=cos2x£¬²¢ÓèÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ô²CÓëxÖá¡¢yÖá¶¼ÏàÇУ¬Ö±Ïßl£ºx+y-4=0ƽ·ÖÔ²CµÄÃæ»ý£®
£¨1£©ÇóÔ²CµÄ·½³Ì£»
£¨2£©¹ýÔ­µãOµÄÖ±Ïßl1½«Ô²CµÄ»¡³¤·Ö³É1£º3µÄÁ½²¿·Ö£¬ÇóÖ±Ïßl1µÄбÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖª¼¯ºÏA={x|x£¼a}£¬B={x|1£¼x£¼2}£¬ÇÒA¡ÉB¡Ù∅£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑ֪˫ÇúÏßx2-$\frac{{y}^{2}}{4}$=1µÄ½¥½üÏßÓëÔ²£¨x-a£©2+y2=4£¨a£¾0£©ÏàÇУ¬Ôòa=$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªsin£¨¦Ð-¦Á£©=-2sin£¨$\frac{¦Ð}{2}+¦Á$£©£¬Ôò$\frac{sin¦Á+cos¦Á}{sin¦Á-cos¦Á}$µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®3C£®-$\frac{1}{3}$D£®-$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Ä³Ð£¸ßÈýÎÄ£¬Àí¸÷Á½¸ö°àÔÚ11Ô·ݽøÐÐÁËÒ»´ÎÖÊÁ¿¿¼ÊÔ£¬¿¼Éú³É¼¨Çé¿öÈçϱíËùʾ£ºÒÑÖªÓ÷ֲã³éÑù·½·¨ÔÚ·ÖÊý[400£¬480£©µÄ¿¼ÉúÖÐËæ»ú³éÈ¡27Ãû¿¼Éú½øÐÐÖÊÁ¿·ÖÎö£¬ÆäÖÐÎĿƿ¼Éú³éÈ¡ÁË7Ãû£®£¨1£©ÇóaµÄÖµ£¨2£©ÈçͼÊÇÎĿƲ»µÍÓÚ550·ÖµÄ5Ãû¿¼ÉúµÄÓïÎijɼ¨£¨ÆäÖÐÓïÎÄÂú·ÖΪ150·Ö£©µÄ¾¥Ò¶Í¼£¬Çë¼ÆËãÕâ5Ãû¿¼ÉúµÄÓïÎijɼ¨µÄ·½²î£»£¨3£©Ôڳɼ¨²»µÍÓÚ550·ÖµÄËùÓп¼ÉúÖгéÈ¡2Ãû½øÐÐÖÎÁÆ·ÖÎö£¬ÇóÖÁÉٳ鵽һÃûÀí¿ÆÉúµÄ¸ÅÂÊ£®
 [0£¬400][400£¬480][480£¬550][550£¬750]
ÎĿƿ¼Éú6735195
Àí¿Æ¿¼Éú53a412

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬µÈÑüÈý½ÇÐÎOABµÄ¶¥µãA¡¢BµÄ×ø±ê·Ö±ðΪ£¨6£¬0£©£¬£¨3£¬3£©£¬ÇÒABÓëÇúÏßy=$\sqrt{x}$½»ÓÚµãC£¬ÔÚ¡÷OABÖÐÈÎȡһµãP£¬ÔòµãPÂäÔÚÒõÓ°²¿·ÖµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{1}{3}$C£®$\frac{5}{27}$D£®$\frac{11}{54}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÔÚ·Ö±ð±êÓкÅÂë2£¬3£¬4£¬5£¬6£¬8µÄ5ÕÅ¿¨Æ¬ÖУ¬¼ÇÏÂËüÃǵıêºÅ£¬Ôò½Ï´ó±êºÅÄܱ»½ÏС±êºÅÕû³ýµÄ¸ÅÂÊÊÇ$\frac{2}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸