精英家教网 > 高中数学 > 题目详情
16.已知P为正△ABC内部(含边界)的任意点,设$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则在平面直角坐标系内点(x,y)对应区域的面积为$\frac{1}{2}$.

分析 通过已知的向量关系以及三角形与P的位置,确定x,y的关系,得到可行域,

解答 解:因为三角形ABC内一点,且$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,
当p点在BC上时,x+y=1,
因为P在三角形ABC内.
∴0≤x+y<1
所以0≤x≤1,0≤y≤1,对应的区域如图,则面积为$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题以向量为载体,考查线性规划的简单应用,抽象出约束条件是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.复数(1-4i)2的虚部为(  )
A.-4iB.-4C.-8iD.-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点.且BF⊥平面ACE.
(1)求证:平面ADE⊥平面BCE;
(2)求二面角E-AC-B的大小;
(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知sin($\frac{π}{4}$+α)=$\frac{1}{3}$,α是第二象限角,则sin(2α+$\frac{5π}{6}$)=$\frac{4\sqrt{2}-7\sqrt{3}}{18}$或-$\frac{7\sqrt{3}+4\sqrt{2}}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解不等式:
(1)$\sqrt{4x-3}$>1
(2)$\sqrt{4-x}$>a
(3)$\sqrt{4x-3}$-$\sqrt{x-3}$>0
(4)3x-4>$\sqrt{x-3}$
(5)$\sqrt{5-x}$>x-3
(6)$\sqrt{5-4x{-x}^{2}}$≥x
(7)$\sqrt{3x+1}$>$\sqrt{2x-1}$-1
(8)(x-3)(x+1)(x+2)≤0
(9)x(x-$\sqrt{3}$)(x+1)(x+2)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在等差数列{an}中,若2(a3+a4+a5)+3(a9+a11)=42,则S13=26.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系xOy中,点M(x,y)的坐标满足不等式组$\left\{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤m}\end{array}\right.$,已知N(1,-1),且$\overrightarrow{ON}•\overrightarrow{OM}$的最小值为-1,则实数m=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设F1,F2是椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦点,若此椭圆上一点P满足|PF2|=|F1F2|,且原点O到直线PF1的距离不超过b,则离心率e的取值范围是(  )
A.($\frac{1}{3}$,$\frac{{\sqrt{2}}}{2}$]B.(0,$\frac{5}{7}$]C.[$\frac{5}{7}$,1)D.($\frac{1}{3}$,$\frac{5}{7}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对定义域分别是Df、Dg的函数y=f(x),y=g(x),
定义一个函数h(x):h(x)=$\left\{\begin{array}{l}{f(x)g(x),当x∈{D}_{f}且x∈{D}_{g}}\\{f(x),当x∈{D}_{f}且x∉{D}_{g}}\\{g(x),当x∉{D}_{f}且x∈{D}_{g}}\end{array}\right.$
(1)若f(x)=$\sqrt{3}$sinx+cosx(x≥0),g(x)=2cosx(x∈R),写出函数h(x)的解析式;
(2)在(I)的条件下,若$x∈[\frac{π}{6},\frac{π}{2}]$时,h(x)-1-m≥0恒成立,求m的取值范围;
(3)若g(x)=f(x+α),其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos2x,并予以证明.

查看答案和解析>>

同步练习册答案