精英家教网 > 高中数学 > 题目详情
19.已知△ABC的三个内角A,B,C所对的边长分别为a,b,c,G为三角形的重心,且满足a$\overrightarrow{GA}$+b$\overrightarrow{GB}$+c$\overrightarrow{GC}$=$\overrightarrow{0}$,则角C=(  )
A.30°B.45°C.60°D.120°

分析 可画出图形,根据向量加法的平行四边形法则及向量的数乘运算便可得出$\overrightarrow{GA}=-\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC})$,$\overrightarrow{GB}=-\frac{1}{3}(-2\overrightarrow{AB}+\overrightarrow{AC})$,$\overrightarrow{GC}=-\frac{1}{3}(\overrightarrow{AB}-2\overrightarrow{AC})$,这样带入$a\overrightarrow{GA}+b\overrightarrow{GB}+c\overrightarrow{GC}=\overrightarrow{0}$并进行向量的数乘运算整理可得到$(-\frac{1}{3}a+\frac{2}{3}b-\frac{1}{3}c)\overrightarrow{AB}+(-\frac{1}{3}a-\frac{1}{3}b+\frac{2}{3}c)$$\overrightarrow{AC}=\overrightarrow{0}$,从而便可得出$\left\{\begin{array}{l}{-\frac{1}{3}a+\frac{2}{3}b-\frac{1}{3}c=0}\\{-\frac{1}{3}a-\frac{1}{3}b+\frac{2}{3}c=0}\end{array}\right.$,进行整理便可得出a=b=c,从而便可得出角C的大小.

解答 解:如图,
根据条件,$\overrightarrow{GA}=-\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC})$,$\overrightarrow{GB}=-\frac{1}{3}(\overrightarrow{BA}+\overrightarrow{BC})=-\frac{1}{3}(-2\overrightarrow{AB}+\overrightarrow{AC})$,$\overrightarrow{GC}=-\frac{1}{3}(\overrightarrow{CB}+\overrightarrow{CA})=-\frac{1}{3}(\overrightarrow{AB}-2\overrightarrow{AC})$;
又$a\overrightarrow{GA}+b\overrightarrow{GB}+c\overrightarrow{GC}=\overrightarrow{0}$;
∴$-\frac{1}{3}a(\overrightarrow{AB}+\overrightarrow{AC})-\frac{1}{3}b(-2\overrightarrow{AB}+\overrightarrow{AC})$$-\frac{1}{3}c(\overrightarrow{AB}-2\overrightarrow{AC})$=$(-\frac{1}{3}a+\frac{2}{3}b-\frac{1}{3}c)\overrightarrow{AB}$$+(-\frac{1}{3}a-\frac{1}{3}b+\frac{2}{3}c)\overrightarrow{AC}=\overrightarrow{0}$;
∴$\left\{\begin{array}{l}{-\frac{1}{3}a+\frac{2}{3}b-\frac{1}{3}c=0}\\{-\frac{1}{3}a-\frac{1}{3}b+\frac{2}{3}c=0}\end{array}\right.$;
整理得a=b=c;
∴△ABC为等边三角形,则:C=60°.
故选C.

点评 考查三角形重心的概念及性质,向量加法的平行四边形法则,以及向量数乘的几何意义及向量的数乘运算,平面向量基本定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求下列函数的单调区间
(1)y=${a}^{{x}^{2}+2x-3}$;
(2)y=$\frac{1}{{0.2}^{x}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.将棱长为1的正方体ABCD-EFGH任意平移至A1B1C1D1-E1F1G1H1,连接GH1,CB1,设M,N分别为GH1,CB1的中点,则MN的长为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知PD⊥平面α,A∈α,B∈α,∠APB=90°,PA、PB与α所成角分别是30°,45°,PD=1,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.人如图,在四棱锥P-ABCD中,底面ABCD是梯形,AB∥CD,∠BAD=60°,AB=2AD,AP⊥BD.
(1)证明:平面ABD⊥平面PAD;
(2)若PA与平面ABCD所成的角为60°,AD=2,PA=PD,求点C到平面PAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知矩阵A=$[\begin{array}{l}{1}&{1}\\{1}&{1}\end{array}]$,求A10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知P(x,y)是函数y=1+lnx图象上一点,O是坐标原点,直线OP的斜率为f(x).
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设g(x)=$\frac{x}{a(1-x)}$[xf(x)-1],若对任意的x∈(0,1)恒有g(x)>-1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-(a-1)lnx+$\frac{a}{x}$(a∈R).
(1)讨论f(x)的单调性;
(2)若f(x)在[1,e]上存在点x0,使得f(x0)≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在三棱柱ABC-A1B1C1中,矩形ABB1A1的对角线相交于点G,且侧面ABB1A1⊥平面ABC,AC=CB=BB1=2,F为CB1上的点,且BF⊥平面AB1C.
(1)求证:AC⊥平面BB1C1C;
(2)求二面角A1-B1C-B的余弦值.

查看答案和解析>>

同步练习册答案