【题目】如图,正四面体A﹣BCD的棱长为a,点E、F分别是棱BD、BC的中点,则平面AEF截该正四面体的内切球所得截面的面积为_____.
![]()
【答案】![]()
【解析】
设圆心为P,内切球的球心为O,内切球的半径为r,作
平面
,则
为底面三角形的中心,由OP⊥AM,
可得,
,利用相似比
求出
,利用四面体中的几何关系求出r,再由截面圆的性质可知,所求截面圆的半径
求解即可.
作图如下:
![]()
根据题意知,平面AEF截该正四面体的内切球所得截面一定是圆,
设圆心为P,内切球的球心为O,
作
平面
,则
为底面三角形的中心,
在等边三角形
中,
,
在
中,由勾股定理知,
,
由图可知,
为四面体外接球的半径,设
,
在
中,由勾股定理可得,
,解得
,
所以正四面体A﹣BCD的内切球半径为
![]()
,
因为OP⊥AM,
,所以
,
又因为
,
由AM2=NM2+AN2可得AM
,
所以
,即
,解得OP
,
∴平面AEF截该正四面体的内切球所得截面圆半径r1
,
平面AEF截该正四面体的内切球所得截面的面积为
,
故答案为:![]()
科目:高中数学 来源: 题型:
【题目】已知直线l1:x﹣y+3=0和l2:x+y+1=0的交点为A,过A且与x轴和y轴都相切的圆的方程为_____,动点B,C分别在l1和l2上,且|BC|=2,则过A,B,C三点的动圆扫过的区域的面积为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB为圆O的直径,点E、F在圆O上,AB
EF,矩形ABCD所在平面和圆O所在平面垂直,已知AB=2,EF=1.
![]()
(I)求证:平面DAF⊥平面CBF;
(II)若BC=1,求四棱锥F-ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P﹣ABCD中,底面ABCD为平行四边形,点M,N,Q分别在PA,BD,PD上.
![]()
(1)若PM:MA=BN:ND=PQ:QD,求证:平面MNQ∥平面PBC.
(2)若Q满足PQ:QD=2,则M点满足什么条件时,BM∥面AQC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的参数方程为
(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线
:
.
(Ⅰ)求曲线
的普通方程和
的直角坐标方程;
(Ⅱ)若
与
相交于
两点,设点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准:(单位:吨),用水量不超过
的部分按平价收费,超过
的部分按议价收费,为了了解全布市民用用水量分布情况,通过袖样,获得了100位居民某年的月用水量(单位:吨),将数据按照
……
分成9组,制成了如图所示的频率分布直方图
![]()
(1)求频率分布直方图中
的值;
(2)若该市政府看望使85%的居民每月的用水量不超过标准
(吨),估计
的值,并说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com