分析 由题意得到$\left\{\begin{array}{l}x+10=y-2\\ 3x+20=y\end{array}\right.$,从而求出x,y,再由逆矩阵公式求出矩阵M的逆矩阵,由此能求出${M^{-1}}[{\begin{array}{l}x\\ y\end{array}}]$.
解答 解:∵点P(x,5)在矩阵M=$[{\begin{array}{l}1&2\\ 3&4\end{array}}]$对应的变换下得到点Q(y-2,y),
∴依题意,$[{\begin{array}{l}1&2\\ 3&4\end{array}}]$$[{\begin{array}{l}x\\ 5\end{array}}]$=$[{\begin{array}{l}{y-2}\\ y\end{array}}]$,即$\left\{\begin{array}{l}x+10=y-2\\ 3x+20=y\end{array}\right.$解得$\left\{\begin{array}{l}x=-4\\ y=8\end{array}\right.$
由逆矩阵公式知,矩阵M=$[{\begin{array}{l}1&2\\ 3&4\end{array}}]$的逆矩阵${M^{-1}}=[{\begin{array}{l}{-2}&1\\{\frac{3}{2}}&{-\frac{1}{2}}\end{array}}]$,(8分)
∴${M^{-1}}[{\begin{array}{l}x\\ y\end{array}}]$=$[{\begin{array}{l}{-2}&1\\{\frac{3}{2}}&{-\frac{1}{2}}\end{array}}]$$[{\begin{array}{l}{-4}\\ 8\end{array}}]$=$[{\begin{array}{l}{16}\\{-10}\end{array}}]$.(10分)
点评 本题考查矩阵变换的应用,是中档题,解题时要认真审题,注意逆矩阵公式的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | π | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com