【题目】如图,直三棱柱
中,底面
为等腰直角三角形,
,
,
是侧棱
上的点.
![]()
(1)若
,证明:
是
的中点;
(2)若
,求二面角
的余弦值.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,由
经过伸缩变换
得到曲线
,以原点为极点,
轴非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程以及曲线
的直角坐标方程;
(2)若直线
的极坐标方程为
,
与曲线
、曲线
在第一象限交于
、
,且
,点
的极坐标为
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】焦点在x轴上的椭圆C:
经过点
,椭圆C的离心率为
.
,
是椭圆的左、右焦点,P为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点M为
的中点(O为坐标原点),过M且平行于OP的直线l交椭圆C于A,B两点,是否存在实数
,使得
;若存在,请求出
的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,过椭圆的焦点且与长轴垂直的弦长为1.
(1)求椭圆C的方程;
(2)设点M为椭圆上第一象限内一动点,A,B分别为椭圆的左顶点和下顶点,直线MB与x轴交于点C,直线MA与y轴交于点D,求证:四边形ABCD的面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”.他们的调查结果如下:
0项 | 1项 | 2项 | 3项 | 4项 | 5项 | 5项以上 | |
理科生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
文科生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下
列联表,并判断是否有
的把握认为,了解阿基米德与选择文理科有关?
比较了解 | 不太了解 | 合计 | |
理科生 | |||
文科生 | |||
合计 |
(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.
(i)求抽取的文科生和理科生的人数;
(ii)从10人的样本中随机抽取3人,用
表示这3人中文科生的人数,求
的分布列和数学期望.
参考数据:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在x轴上,长轴的两个端点分别为
、
.短轴的两个端点分别为
,
.菱形
的面积为
,离心率
.
(1)求椭圆的标准方程;
(2)设
,经过点M作斜率不为0的直线
交椭圆C于A、B两点,若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,多面体是由底面为
的直四棱柱被截面
所截而得到的,该直四棱柱的底面为菱形,其中
,
,
,
.
![]()
(1)求
的长;
(2)求平面
与底面
所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
+
=1(a>b>0)的离心率为
,直线l:x+2y=4与椭圆有且只有一个交点T.
(I)求椭圆C的方程和点T的坐标;
(Ⅱ)O为坐标原点,与OT平行的直线l′与椭圆C交于不同的两点A,B,直线l′与直线l交于点P,试判断
是否为定值,若是请求出定值,若不是请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com