| A. | (-2,+∞) | B. | (0,+∞) | C. | (1,+∞) | D. | (4,+∞) |
分析 由f(2)=-2,f(1+x)=-f(1-x),取x=1代入,可得f(0)=2.令g(x)=$\frac{f(x)}{{e}^{x}}$,可得g′(x)<0,利用其单调性即可解出.
解答 解:∵f(2)=-2,f(1+x)=-f(1-x),
∴f(2)=-f(0)=-2,解得f(0)=2.
令g(x)=$\frac{f(x)}{{e}^{x}}$,则g′(x)=$\frac{{f}^{′}(x){e}^{x}-f(x){e}^{x}}{({e}^{x})^{2}}$=$\frac{{f}^{′}(x)-f(x)}{{e}^{x}}$,
∵f′(x)<f(x),
∴g′(x)<0,
∴g(x)在R上单调递减,
∵$\frac{f(x)}{{e}^{x}}$<2=$\frac{f(0)}{{e}^{0}}$,
∴x>0,
∴不等式f(x)<2ex的解集为(0,+∞),
故选:B.
点评 本题考查了构造函数利用导数研究函数的单调性解不等式的方法,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x-3y-9=0 | B. | 3x-2y-11=0 | C. | 3x+2y-7=0 | D. | x-y-5=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 607 | B. | 328 | C. | 253 | D. | 007 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com