【题目】已知正三棱锥
,点
、
、
、
都在半径为
的球面上,若
、
、
两两相互垂直,则球心到截面
的距离为__________.
【答案】![]()
【解析】
先利用正三棱锥的特点,将球的内接三棱锥问题转化为球的内接正方体问题,从而将所求距离转化为正方体中,中心到截面的距离问题,利用等体积法可实现此计算
∵正三棱锥P﹣ABC,PA,PB,PC两两垂直,
∴此正三棱锥的外接球即为以PA,PB,PC为三条棱的正方体的外接球,
∵球的半径为
,
∴正方体的边长为2,即PA=PB=PC=2
球心到截面ABC的距离即正方体中心到截面ABC的距离
设P到截面ABC的距离为h,则正三棱锥P﹣ABC的体积V
S△ABC×h
S△PAB×PC
2×2×2![]()
△ABC为边长为2
的正三角形,S△ABC
(2
)2![]()
∴h![]()
∴球心(即正方体中心)O到截面ABC的距离为
,
故答案为
.
科目:高中数学 来源: 题型:
【题目】随着移动互联网的发展,与餐饮美食相关的手机APP软件层出不穷.现从某市使用A和B两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下.
![]()
![]()
![]()
(1)已知抽取的100个使用A款订餐软件的商家中,甲商家的“平均送达时间”为18分钟。现从使用A款订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;
(2)试估计该市使用A款订餐软件的商家的“平均送达时间”的众数及平均数;
(3)如果以“平均送达时间”的平均数作为决策依据,从A和B两款订餐软件中选择一款订餐,你会选择哪款?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列
的公差d大于0,前n项的和为
.已知
=18,
,
,
成等比数列.
(1)求
的通项公式;
(2)若对任意的
,都有k(
+18)≥
恒成立,求实数k的取值范围;
(3)设
(
).若s,t
,s>t>1,且
,求s,t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列选项中,p是q的必要不充分条件的是( )
A.
;
方程
的曲线是椭圆
B.
;
对
不等式
恒成立
C.设
是首项为正数的等比数列,
公比小于0;
对任意的正整数n,![]()
D.已知空间向量
,
,
;
向量a与b的夹角是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和
,
是常数且
.
(1)证明:
是等差数列;
(2)证明:以
为坐标的点
落在同一直线上,并求直线方程;
(3)设
,
是以
为圆心,
为半径的圆
,求使得点
都落在圆外时,
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com