精英家教网 > 高中数学 > 题目详情
(1)六名同学做一个游戏,买了六张卡片,各自在其中一张上写祝福,然后放在一起,每人随机拿一张,恰有两人拿回自己写祝福的那张卡片,则不同的拿法有多少种?
(2)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同的排法总数为?
考点:排列、组合及简单计数问题
专题:应用题,排列组合
分析:(1)由题意,恰有两人拿回自己写祝福的那张卡片,共有
C
2
6
种,其余4名同学中一位先选有
C
1
3
种,剩下的3名学生有
C
1
3
种,即可得出结论;
(2)先考虑3位女生中有且只有两位相邻的排列共有C32A22A42A33,减去在3女生中有且仅有两位相邻且男生甲在两端的排列.
解答: 解:(1)由题意,恰有两人拿回自己写祝福的那张卡片,共有
C
2
6
种,其余4名同学中一位先选有
C
1
3
种,剩下的3名学生有
C
1
3
种,故共有
C
2
6
C
1
3
C
1
3
=135种;
(2)先考虑3位女生中有且只有两位相邻的排列
共有C32A22A42A33=432种,
在3女生中有且仅有两位相邻且男生甲在两端的排列有2×C32A22A32A22=144种,
∴不同的排列方法共有432-144=288种.
点评:本题考查排列组合及简单的计数原理,本题解题的关键是在计算时要做到不重不漏,把不合题意的去掉.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

向量
a
=(1,2),
b
=(x,1),
(1)当
a
+2
b
与2
a
-
b
平行时,求x;
(2)当
a
+2
b
与2
a
-
b
垂直时,求x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,对于任意的多项式f(x)与任意复数z,f(z)=0?x-z整除f(x).利用上述定理解决下列问题:
(1)在复数范围内分解因式:x2+x+1;
(2)求所有满足x2+x+1整除x2n+xn+1的正整数n构成的集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,满足Sn=2an-2,数列{bn}满足{bn}=log2an
(1)求数列{an}和{bn}的通项公式;
(2)记{
1
bnbn+1
}的前n项和为Tn,求Tn
(3)若不等式λ2-
3
2
λ>Tn对任意n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)对任意x∈R都有f(x)+f(1-x)=
1
2

(1)求f(
1
2
)和f(
1
n
)+f(
n-1
n
)(n∈N*)的值;
(2)数列{an}满足:an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1),数列{an}是等差数列吗?请给予证明;
(3)在第(2)问的条件下,若数列{bn}满足b1=-6,16an2-4(bn+1-bn-3)an+bn+1+2bn+2=0,试求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a3=8,a6=17.
(1)求{an}的通项公式;
(2)各项均为正数的等比数列{bn}满足b1=a1,b3=a3,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
3
,右焦点到渐近线的距离为
2

(1)求双曲线C的方程;
(2)若直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值及弦|AB|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABCD为正方形,△ABE为直角三角形,∠BAE=90°,且AD⊥AE.
(Ⅰ)证明:平面AEC⊥平面BED;
(Ⅱ)若AB=2AE,求异面直线BE与AC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设(1+
1
2
x)m=a0+a1x+a2x2+a3x3+…+amxm,若a0,a1,a2成等差数列.
(1)求(1+
1
2
x)m展开式的中间项;
(2)求(1+
1
2
x)m展开式中所有含x奇次幂的系数和.

查看答案和解析>>

同步练习册答案