精英家教网 > 高中数学 > 题目详情
4.若集合M={x|(x+4)(x-3)<0},N={x|2<x<6},则M∪N等于(  )
A.(2,3)B.(-4,6)C.(2,4)D.(-3,6)

分析 先分别求出集合M,N,由此利用并集定义能求出M∪N.

解答 解:∵集合M={x|(x+4)(x-3)<0}={x|-4<x<3},
N={x|2<x<6},
∴M∪N={x|-4<x<6}=(-4,6).
故选:B.

点评 本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.把平面直角坐标系xOy中,点A(2,0),点B在单位圆上,∠AOB=θ(0<θ<π).
(1)若点B(-$\frac{3}{5}$,$\frac{4}{5}$),求tan($\frac{π}{4}$-θ)的值;
(2)若$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OC}$,$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\frac{33}{17}$,求cos($\frac{π}{3}$+θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图是函数y=Asin(ωx+φ)+2(A>0,ω>0,|φ|<π)的图象的一部分,则它的振幅、周期、初相分别是(  )
A.A=3,T=$\frac{4π}{3}$,φ=-$\frac{π}{6}$B.A=3,T=$\frac{4π}{3}$,φ=-$\frac{3π}{4}$
C.A=1,$T=\frac{4π}{3},φ=-\frac{π}{6}$D.A=1,$T=\frac{4π}{3},φ=-\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数y=f(x)=$\frac{ax+1}{x+2}$在区间(-2,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某程序框图如图所示,若输入的n等于($\sqrt{x}$+$\frac{2}{{x}^{2}}$)5展开式中的常数项,则输出的结果是(  )
A.30B.28C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2,且离心率为$\frac{\sqrt{3}}{2}$,过原点的直线l交椭圆C于M,N两点.
(1)求椭圆C的标准方程;
(2)点P为线段MN的中垂线与椭圆C的一个公共点,求△PMN面积的最小值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,有命题:
①$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$;
②$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$;
③若($\overrightarrow{AB}$+$\overrightarrow{AC}$)($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,则△ABC是等腰三角形;
④若$\overrightarrow{AB}$•$\overrightarrow{CA}$>0,则△ABC为锐角三角形.
上述命题正确的是(  )
A.②③B.①④C.①②D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.甲、乙两名运动员的5次测试成绩如图所示,以这5次测试成绩为判断依据,则甲、乙两名运动员成绩稳定性较差的是甲.(填“甲、乙”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:x2=2py(p>0)的焦点为F,过抛物线上一点P作抛物线C的切线l交x轴于点D,交y轴于点Q,当|FD|=2时,∠PFD=60°.
(1)判断△PFQ的形状,并求抛物线C的方程;
(2)已知点M(2,2),若抛物线上异于点P的不同两点A,B满足$\overrightarrow{AM}$+$\overrightarrow{BM}$=0,且经过A,B,P三点的圆和抛物线在点P处有相同的切线,求P点的坐标.

查看答案和解析>>

同步练习册答案