精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD-A1B1C1D1中,E为DD1的中点.
(Ⅰ)证明:AC⊥BD1
(Ⅱ)证明:BD1∥平面ACE.
考点:直线与平面垂直的性质,直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:(I)证明AC⊥BD,且AC⊥DD1,即可证明AC⊥平面BDD1,从而证明AC⊥BD1
( II)如图所示,证明OE∥BD1,即可证明BD1∥平面ACE.
解答: 解:(I)证明:在正方体ABCD中,连结BD,
∴AC⊥BD,
又∵DD1⊥平面ABCD,且AC?平面ABCD,
∴AC⊥DD1
又BD∩DD1=D,
∴AC⊥平面BDD1
又∵BD1?平面BDD1
∴AC⊥BD1;如图所示;
( II)证明:设BD∩AC=O,连结OE,
在△BDD1中,O、E分别为BD、DD1的中点,
∴OE∥BD1
又∵OE?平面ACE,且BD1?平面ACE,
∴BD1∥平面ACE.
点评:本题考查了空间中的垂直与平行关系的证明问题,解题时应结合图形,弄清空间中的平行与垂直的条件与结论是什么,是中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

cos2
π
12
-sin2
π
12
=(  )
A、
1
2
B、-
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①必然事件的概率为1;
②如果某种彩票的中奖概率为
1
10
,那么买1000张这种彩票一定能中奖;
③某事件的概率为1.1;
④对立事件一定是互斥事件;
⑤在适宜的条件下种下一粒种子,观察它是否发芽,这个试验为古典概型.
其中正确的说法是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB是平面α的一条斜线,B为斜足,AO⊥α,O为垂足,BC为α内的一条直线,∠ABC=60°,∠OBC=45°,求斜线AB和平面α所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,a1=1,an=
Sn
n
+2(n-1)(n∈N*).
(1)求证:数列{an}为等差数列,并分别写出an和Sn关于n的表达式;
(2)设数列{
1
anan+1
}
的前n项和为Tn,证明:
1
5
Tn
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,-1)
b
=(
3
cosx,-
1
2
),函数f(x)=(
a
+
b
)•
a
-2
(1)求函数f(x)的最小正周期;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,a=2
3
,且f(A)=1,求A和△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=ax2-x(a≠0).
(1)设F(x)=f(x)-g(x)在[1,+∞)上单调递减,求a的取值范围;
(2)若函数y=f(x)与y=g(x)的图象有两个不同的交点M、N,求a的取值范围;
(3)在(2)的条件下,过线段MN的中点作x轴的垂线分别与f(x)的图象和g(x)的图象交S、T点,以S为切点作f(x)的切线l1,以T为切点作g(x)的切线l2.是否存在实数a使得l1∥l2,如果存在,求出a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:-2≤1-
x-1
3
≤2,q:x2-2x+1-m2≤0(m>0).若“非p”是“非q”的充分而不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
3
x+2
在[-5,-4]上的值域是
 

查看答案和解析>>

同步练习册答案