精英家教网 > 高中数学 > 题目详情
已知p:-2≤1-
x-1
3
≤2,q:x2-2x+1-m2≤0(m>0).若“非p”是“非q”的充分而不必要条件,求实数m的取值范围.
考点:复合命题的真假
专题:简易逻辑
分析:先解出p,q下的不等式,再求出非p,非q,根据非p是非q的充分不必要条件即可得到限制m的不等式,解不等式即得m的取值范围.
解答: 解:解-2≤1-
x-1
3
≤2
得:-2≤x≤10,解x2-2x+1-m2≤0得:1-m≤x≤1+m;
∴非p:x<-2,或x>10;
非q:x<1-m,或x>1+m;
∵“非p”是“非q”的充分而不必要条件,即由非p能得到非q,而由非q得不到非p;
∴1-m≥-2,且1+m≤10,解得m≤3;
∴实数m的取值范围为(-∞,3].
点评:考查分式不等式,一元二次不等式的求解,充分条件的概念,必要条件的概念,充分不必要条件的概念,本题也可借助数轴求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)在△ABC中,已知a=1,b=1,C=120°,求c;
(2)在△ABC中,A=
π
6
,a=8,b=8
3
,求△ABC面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E为DD1的中点.
(Ⅰ)证明:AC⊥BD1
(Ⅱ)证明:BD1∥平面ACE.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)如图将△ABC,平行四边形ABCD,直角梯形ABCD分别绕AB边所在的直线旋转一周,由此形成的几何体由哪些简单几何体构成.

(2)如图由哪些简单几何体构成.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有4个同学去看电影,他们坐在了同一排,且一排有6个座位.问:
(1)所有可能的坐法有多少种?
(2)此4人中甲,乙两人相邻的坐法有多少种?
(3)所有空位不相邻的坐法有多少种?(结果均用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC三个内角A、B、C所对边为a、b、c.
(1)若A=45°,b=30°,a=10
2
,求b;
(2)若a2+b2=c2+ab,且sinA:sinB=b:a,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合M={x|x≤3},N={x|x<1},求M∪N,(∁UM)∩N,(∁UM)∪(∁UN).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+2
3
sin(π-x)cosx-2cosxsin(
π
2
-x)
(1)求函数f(x)的解析式及f(x)的周期;
(2)求f(x)在区间[0,
4
]内的单调递减区间及值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

若将函数f(x)=sinx+cosx的图象向右平移P个单位,所得图象关于原点对称,则P的最小正值是
 

查看答案和解析>>

同步练习册答案