精英家教网 > 高中数学 > 题目详情
11.设向量$\overrightarrow{a}$=(1,-3),$\overrightarrow{b}$=(-2,4),$\overrightarrow{c}$=(-1,-2),若表示向量4$\overrightarrow{a}$,4$\overrightarrow{b}$-2$\overrightarrow{c}$,2($\overrightarrow{a}$-$\overrightarrow{c}$),$\overrightarrow{d}$的有向线段首尾相接能构成四边形,则向量$\overrightarrow{d}$的坐标是(-2,-6).

分析 根据向量的坐标运算的法则计算即可.

解答 解:向量4$\overrightarrow{a}$,4$\overrightarrow{b}$-2$\overrightarrow{c}$,2($\overrightarrow{a}$-$\overrightarrow{c}$),$\overrightarrow{d}$的有向线段首尾相接能构成四边形,
则向量$\overrightarrow{d}$=-[4$\overrightarrow{a}$+4$\overrightarrow{b}$-2$\overrightarrow{c}$+2($\overrightarrow{a}$-$\overrightarrow{c}$)]=-(6$\overrightarrow{a}$+4$\overrightarrow{b}$-4$\overrightarrow{c}$)=-[6(1,-3)+4(-2,4)-4(-1,-2)]=-(2,6)=(-2,-6),
故答案为:(-2,-6).

点评 本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某调研机构调取了当地2014年10月~2015年3月每月的雾霾天数与严重交通事故案例数资料进行统计分析,以备下一年如何预防严重交通事故作参考.部分资料如下:
时间 14年10月 14年11月 14年12月 15年1月 15年2月 15年3月
 雾霾天数7  11 13 12 10 8
 严重交通事故案例数 14 25 29 26 2216
该机构的研究方案是:先从这六组数中剔除2组,用剩下的4组数据求线性回归方程,再用被剔除的2组数据进行检验,若由线性回归方程得到的估计数据与所剔除的检验数据的误差均不超过2,则认为得到的线性回归方程是合情的.
(1)求剔除的2组数据不是相邻2个月数据的概率;
(2)若剔除的是2014年10月与2015年2月这两组数据,请你根据其它4个月的数据,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(3)①根据(2)所求的回归方程,求2014年10月与2015年2月的严重交通事故案例数;
②判断(2)所求的线性回归方程是否是合情的.
[附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义域为R的偶函数f(x)满足对任意的x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-(x-2)2+1.若函数y=f(x)-a(x-$\frac{11}{12}$)在(0,+∞)上恰有三个零点,则实数a的取值范围是(  )
A.($\frac{1}{3}$,3)B.($\frac{1}{3}$,$\frac{4}{3}$)C.(3,12)D.($\frac{4}{3}$,12)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果函数$f(x)=sin({ωx+\frac{π}{6}})$(ω>0)的相邻两个零点之间的距离为$\frac{π}{6}$,则ω的值为(  )
A.3B.6C.12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知一个样本中的数据为1,2,3,4,5,则该样本的方差为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对某商店一个月内每天的顾客人数进行统计,得到样本的茎叶图(如图所示).则该样本的中位数、众数、极差分别是(  )
A.46  45  56B.46  45  53C.47  45  56D.45  47  53

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算下列各式的值:
(1)${(-3\frac{3}{8})^{-\frac{2}{3}}}-5×{(0.2)^{\frac{1}{2}}}+{(\sqrt{5}+2)^{-1}}+{(\sqrt{2}+\sqrt{3})^0}$;
(2)$(2+{log_3}\frac{32}{9})×{log_2}3+2ln\sqrt{e}+{2^{1+{{log}_2}3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:{1}∈{1,2,3},q:{3}⊆{1,2,3},则在命题:①p∧q;②p∨q;③¬p;④¬q中,真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)数列{an}的通项公式an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$,前n项和为9,求n;
(2)数列{an}的通项为an=(n+$\frac{1}{2}$)+$\frac{1}{{2}^{n}}$,求Sn

查看答案和解析>>

同步练习册答案