精英家教网 > 高中数学 > 题目详情
13.求证:函数f(x)=$\frac{x+a}{x+1}$(a>1)在区间(-1,+∞)上是减函数.

分析 根据函数单调性的定义证明即可.

解答 解:设?x1,x2∈(-1,+∞)且x1<x2
则f(x1)-f(x2)=$\frac{{x}_{1}+a}{{x}_{1}+1}$-$\frac{{x}_{2}+a}{{x}_{2}+1}$=$\frac{(1-a){(x}_{1}{-x}_{2})}{{(x}_{1}+1){(x}_{2}+1)}$,
∵${x_1},{x_2}∈(-1,+∞),且{x_1}<{x_2}\\$,
∴${x_1}+1>0,{x_2}+1>0,{x_1}-{x_2}<0\\ \begin{array}{l}{又}&{\;}\end{array}a>1\\$,
∴$1-a<0\\$,
∴$\frac{{(1-a)({x_1}-{x_2})}}{{({x_1}+1)({x_2}+1)}}>0,即f({x_1})-f({x_2})>0\\$,
∴$f({x_1})>f({x_2})\\,故函数f(x)在区间(-1,+∞)是减函数.\end{array}$.

点评 本题考查了函数单调性的定义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.如图,正方体ABCD一A1B1C1D1的棱长为2,动点E,F在棱A1B1上,且EF=1,动点Q在棱CD上,P是棱AD中点,R是棱DDl的中点,则以下结论:
①四面体PEFQ的体积为定值;
②异面直线PE与QF的所成角的大小为定值;
③过P点有且只有一条直线与直线BB1和C1D1都平行;
④过P点有且只有一个平面与直线BB1和C1D1都平行;
⑤过点B,P,R的平面截该正方体所得的截面是五边形.
其中正确结论的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若$\overline z$=$\frac{i}{1+i}$,则z•$\overline z$=(  )
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A={(x,y)|y=x-3},B={(x,y)|y=-x-5},则A∩B为(  )
A.{-1,4}B.{-1,-4}C.{(-1,4)}D.{(-1,-4)}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}x-2,\;x≥0\\{2^x},\;x<0\end{array}$,则f(-1)=(  )
A.-1B.$\frac{1}{2}$C.2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.对一批产品的长度(单位:mm)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在[15,20)和[25,30)上的为二等品,在[10,15)和[30,35)上的为三等品;
(Ⅰ)用频率估计概率,现从该批产品中随机抽取1件,求其为二等品的概率;
(Ⅱ)若该批产品有20件,从三等品中随机抽取2件,求抽到的2件产品长度均在[30,35)上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数y=f(x)是定义在R上的奇函数,?x∈R,f(x-1)=f(x+1)成立,当x∈(0,1)且x1≠x2时,有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0.给出下列命题:
①f(1)=0;
②f(x)在[-2,2]上有5个零点;
③直线x=2 016是函数y=f(x)图象的一条对称轴.
④点(2 016,0)是函数y=f(x)图象的一个对称中心;
则正确命题的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题p:“?x≥0,e${\;}^{{x}_{0}}$<x0+1”,则¬p是(  )
A.?x≥0,ex<x+1B.?x≥0,ex>x+1C.?x≥0,ex≥x+1D.?x≥0,ex≥x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\sqrt{x+2}$+$\frac{1}{|x|-1}$.
(1)求函数的定义域;     
(2)求f(0),f[f(2)]的值.

查看答案和解析>>

同步练习册答案