精英家教网 > 高中数学 > 题目详情
19.以(1,0),(-1,0)为焦点的椭圆与y=x-2有公共点,则该椭圆离心率的最大值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{10}}}{5}$

分析 设出椭圆的方程,求出离心率的平方,将直线方程代入椭圆方程得得到的关于x的一元二次方程的判别式大于0,求出 b2 的最小值,此时的离心率最大,求解即可.

解答 解:由题意知,c=1,a2-b2=1,故可设椭圆的方程为:$\frac{{x}^{2}}{{b}^{2}+1}+\frac{{y}^{2}}{{b}^{2}}=1$,
离心率的平方为 $\frac{1}{{b}^{2}+1}$   ①,∵直线x-y-2=0与椭圆有公共点,将直线方程代入椭圆方程得
(2b2+1)x2-4(b2+1)x+3b2+4-b4=0,由△=16(b4+2b2+1)-4(2b2+1)(3b2+4-b4)≥0,
∴2b4-3b2≥0,∴b2≥$\frac{3}{2}$,或 b2≤0(舍去),∴b2 的最小值为$\frac{3}{2}$,a2=$\frac{5}{2}$,
∴离心率最大值为:$\frac{\sqrt{10}}{5}$.
故选:D.

点评 本题考查椭圆的标准方程和简单性质,利用直线和椭圆有交点可得判别式大于或等于0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求|PM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知直线l1:ax+(a+2)y+2=0和l2:x+ay+1=0,若l1∥l2则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,图中的四边形都是边长为1的正方体,两条虚线互相垂直,则该几何体的体积是(  )
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$1-\frac{π}{6}$D.$1-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC的内角A、B、C的对边分别为a、b、c,且3bcos A=ccos A+acosC.
(1)求tanA的值;
(2)若a=4$\sqrt{2}$,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.数列{an}的前n项和为Sn,Sn=2an-n(n∈N*).
(1)求证:数列{an+1}成等比数列;
(2)求数列{an}的通项公式;
(3)数列{an}中是否存在连续三项可以构成等差数列?若存在,请求出一组适合条件的三项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知(ax+b)6的展开式中x4项的系数与x5项的系数分别为135与-18,则(ax+b)6展开式所有项系数之和为(  )
A.-1B.1C.32D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.从正五边形的5个顶点中随机选择3个顶点,则以它们作为顶点的三角形是锐角三角形的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在三棱柱ABC-A1B1C1中,△ABC是边长为2的正三角形,侧面BB1C1C为矩形,D,E,F分别是线段BB1,AC1,A1C1的中点.
(1)求证:DE∥平面A1B1C1
(2)若平面ABC⊥平面BB1C1C,BB1=4,求三棱锥C-AC1D的体积.

查看答案和解析>>

同步练习册答案