精英家教网 > 高中数学 > 题目详情
7.P为圆x2+y2=1的动点,则点P到直线3x-4y-10=0的距离的最大值为3.

分析 圆心(0,0)到直线3x-4y-10=0的距离等于$\frac{|0-0-10|}{\sqrt{9+16}}$=2,用2加上半径1,即为所求.

解答 解:圆x2+y2=1的圆心(0,0)到直线3x-4y-10=0的距离等于$\frac{|0-0-10|}{\sqrt{9+16}}$=2,
故圆x2+y2=1上的动点P到直线3x-4y-10=0的距离的最大值为2+1=3,
故答案为:3.

点评 本题考查直线和圆的位置关系,点到直线的距离公式,求出圆心(0,0)到直线3x-4y-10=0的距离,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在公差不为零的等差数列{an}中,a2=1,a2、a4、a8成等比数列.
(1)求数列{an}的通项公式an
(2)设数列{an}的前n项和为Sn,记bn=$\frac{1}{{S}_{n}}$.Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.有下列四个命题:若λ是实数,且λ$\overrightarrow{a}$=$\overrightarrow{0}$,则λ=0或$\overrightarrow{a}$=$\overrightarrow{0}$;②($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$);③若$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{b}$;④若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$⊥$\overrightarrow{b}$.其中一定正确的命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5$\sqrt{3}$,CD=5,BD=2AD.
(Ⅰ)求AD的长;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=f(x)的图象与函数y=2x的图象关于直线y=x对称,则f(2)的值为(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设0<a<1,实数x,y满足$|x|-{log_a}\frac{1}{y}=0$,则y关于x的函数的图象形状大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数在定义域上为增函数的是(  )
A.y=x3B.$y=-\frac{1}{x}$C.$y={log_{\frac{1}{2}}}$xD.$y={(\frac{1}{2})^x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|≠0,且$\overrightarrow{b}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设P,A,B,C是一个球面上的四个点,PA,PB,PC两两垂直,且PA=PB=PC=1,则该球的体积为$\frac{\sqrt{3}}{2}$π.

查看答案和解析>>

同步练习册答案