12£®ÒÔÆ½ÃæÖ±½Ç×ø±êϵԭµãOΪ¼«µã£¬ÒÔxÖá·Ç¸º°ëÖáΪ¼«ÖᣬÒÔÆ½ÃæÖ±½Ç×ø±êϵµÄ³¤¶Èµ¥Î»Îª³¤¶Èµ¥Î»½¨Á¢¼«×ø±êϵ£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2-3t}\\{y=-1+2t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È=4cos¦È
£¨¢ñ£© ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£© ÉèÖ±ÏßlÓëÇúÏßCÏཻÓÚA£¬BÁ½µã£¬Çó|AB|£®

·ÖÎö £¨¢ñ£©Ö±½Ó°Ñ¼«×ø±ê·½³Ìת»¯ÎªÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©°Ñ²ÎÊý·½³Ì´úÈëÅ×ÎïÏߵõ½¹ØÓÚtµÄÒ»Ôª¶þ´Î·½³Ì£¬½øÒ»²½ÀûÓøùºÍϵÊýµÄ¹ØÏµÇó³ö½á¹û£®

½â´ð ½â£º£¨¢ñ£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È=4cos¦È£¬
ת»¯Îª£º£¨¦Ñsin¦È£©2=4¦Ñcos¦È£¬
½øÒ»²½×ª»¯ÎªÖ±½Ç×ø±ê·½³ÌΪ£ºy2=4x
£¨¢ò£©°ÑÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2-3t}\\{y=-1+2t}\end{array}\right.$£¨tΪ²ÎÊý£©»¯Îª£º2x+3y=1£¬
´úÈëy2=4xµÃy2+6y-2=0£»
ÉèA¡¢BµÄ×Ý×ø±ê·Ö±ðΪy1¡¢y2£»
Ôòy1y2=-2£¬y1+y2-6£»
Ôò|y1-y2|=$\sqrt{36-4¡Á£¨-2£©}$=2$\sqrt{11}$£»
|AB|=$\sqrt{1+£¨-\frac{3}{2}£©^{2}}$¡Á|y1-y2|=$\frac{\sqrt{13}}{2}$¡Á2$\sqrt{11}$=$\sqrt{143}$£¬
ËùÒÔ|AB|=$\sqrt{143}$£®

µãÆÀ ±¾Ì⿼²éµÄ֪ʶҪµã£º¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬Ò»Ôª¶þ´Î·½³Ì¸ùºÍϵÊýµÄ¹ØÏµµÄÓ¦Óã¬Ö÷Òª¿¼²éѧÉúµÄÓ¦ÓÃÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èçͼ£¬Õý·½ÌåP1P2P3P4-Q1Q2Q3Q4µÄÀⳤΪ1£¬Éè
x=$\overrightarrow{{P_1}{Q_1}}\overrightarrow{•{S_i}{T_j}}£¬£¨{{S_i}£¬{T_j}¡Ê\left\{{{P_i}£¬{Q_j}}\right\}}£©£¬£¨{i£¬j¡Ê\left\{{1£¬2£¬3£¬4}\right\}}£©$£¬
¶ÔÓÚÏÂÁÐÃüÌ⣺
¢Ùµ±$\overrightarrow{{S_i}{T_j}}=\overrightarrow{{P_i}{Q_i}}$ʱ£¬x=1£»
¢Úµ±x=0ʱ£¬£¨i£¬j£©ÓÐ12ÖÖ²»Í¬È¡Öµ£»
¢Ûµ±x=-1ʱ£¬£¨i£¬j£©ÓÐ16ÖÖ²»Í¬µÄȡֵ£»
¢ÜxµÄÖµ½öΪ-1£¬0£¬1£®
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÚB£®¢Ù¢ÜC£®¢Ù¢Û¢ÜD£®¢Ù¢Ú¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚ¡÷ABCÖУ¬Éèa£¾b£¾c£¬¼Çx=sinAcosC£¬y=sinCcosA£¬z=sinBcosB£¬ÊԱȽÏx¡¢y¡¢zµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª£ºÇúÏßCµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=acos¦È£¨a£¾0£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$ £¨tΪ²ÎÊý£©
£¨1£©ÇóÇúÏßCÓëÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßCÏàÇУ¬ÇóaÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ËÄÀâ×¶P-ABCDµÄµ×ÃæÊDZ߳¤Îª1µÄÕý·½ÐΣ¬PD¡Íµ×ÃæABCD£¬PD=AD£¬EΪPCµÄÖе㣬FΪPBÉÏÒ»µã£¬ÇÒEF¡ÍPB£®
£¨1£©Ö¤Ã÷£ºPA¡ÎÆ½ÃæEDB£»
£¨2£©Ö¤Ã÷£ºAC¡ÍDF£»
£¨3£©ÇóÆ½ÃæABCDºÍÆ½ÃæDEFËù³É¶þÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÈçͼÊÇÒ»¸ö¼¸ºÎÌåµÄÈýÊÓͼ£¬ÈôËüµÄÌå»ýÊÇ$3\sqrt{3}$£¬Ôòa=$\sqrt{3}$£¬¸Ã¼¸ºÎÌåµÄ±íÃæ»ýΪ2$\sqrt{3}$+18£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÊýÁÐ{an}Âú×㣺an£¾0£¬ÇÒ¶ÔÒ»ÇÐn¡ÊN*£¬ÓÐa13+a23+¡­+an3=Sn2£¬ÆäÖÐSnΪÊýÁÐ{an}µÄǰnÏîºÍ£®
£¨1£©Çóa1£¬a2£¬a3£¬a4£»
£¨2£©²ÂÏëÊýÁÐ{an}µÄͨÏʽ£¬²¢½øÐÐÖ¤Ã÷£»
£¨3£©Ö¤Ã÷£º$\frac{1}{ln{a}_{2}}$+$\frac{1}{ln{a}_{3}}$+¡­$\frac{1}{ln{a}_{n}}$£¾$\frac{3{n}^{2}-n-2}{2n£¨n+1£©}$£¨n¡Ý2£¬n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªa=$\frac{1}{2}$£¬b=$\frac{{{{log}_2}3}}{3}$£¬$c={log_{\frac{1}{2}}}$3£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎªb£¾a£¾c£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª¡÷ABCµÄÄÚ½ÇΪA¡¢B¡¢C£¬Æä¶Ô±ß·Ö±ðΪa¡¢b¡¢c£¬BΪÈñ½Ç£¬ÏòÁ¿$\overrightarrow{m}$=£¨2sinB£¬-$\sqrt{3}$£©£¬$\overrightarrow{n}$=£¨cos2B£¬2cos2$\frac{B}{2}$-1£©£¬ÇÒ$\overrightarrow{m}¡Î\overrightarrow{n}$£®
£¨1£©Çó½ÇBµÄ´óС£»
£¨2£©Èç¹ûb=2£¬ÇóS¡÷ABCµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸