精英家教网 > 高中数学 > 题目详情
1.已知a=$\frac{1}{2}$,b=$\frac{{{{log}_2}3}}{3}$,$c={log_{\frac{1}{2}}}$3,则a,b,c的大小关系为b>a>c.

分析 先根据函数y=log2x为增函数,即可判断出a,b的关系,再根据对数函数的性质得到c<0,问题得以解决.

解答 解:a=$\frac{1}{2}$=log2${2}^{\frac{1}{2}}$,b=$\frac{{{{log}_2}3}}{3}$=log2${3}^{\frac{1}{3}}$,
∵$({2}^{\frac{1}{2}})^{6}$=23=8,$({3}^{\frac{1}{3}})^{6}$=32=9,
∴$({2}^{\frac{1}{2}})^{6}$<$({3}^{\frac{1}{3}})^{6}$,
∴a<b,
∵$c={log_{\frac{1}{2}}}$3<0,
∴b>a>c;
故答案为:b>a>c;

点评 本题考查了对数函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=Asin(ωx+φ)+b(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示.
(I)求f(x)在R上的单调递增区间;
(II)设x0(x0∈(0,$\frac{π}{4}$))是函数y=f(x)的一个零点,求cos(2x0)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.以平面直角坐标系原点O为极点,以x轴非负半轴为极轴,以平面直角坐标系的长度单位为长度单位建立极坐标系.已知直线l的参数方程为$\left\{\begin{array}{l}{x=2-3t}\\{y=-1+2t}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρsin2θ=4cosθ
(Ⅰ) 求曲线C的直角坐标方程;
(Ⅱ) 设直线l与曲线C相交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知M=(x2+a)(2x+1)9的展开式中x4项的系数为2160.求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“m>2”是“双曲线${x^2}-\frac{y^2}{m}=1$的离心率大于$\sqrt{2}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前项和为Sn,a1=1,an=$\frac{S_n}{n}+2(n-1),(n∈{N^*})$.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)是否存在正整数n使得$\frac{S_1}{1}+\frac{S_2}{2}$+…+$\frac{S_n}{n}-{(n-1)^2}$=2015成立?若存在,求出n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足a1=15,$\frac{{{a_{n+1}}-{a_n}}}{n}=2$,则$\frac{{a}_{n}}{n}$的最小值为$\frac{27}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某年级有1000名学生,现从中抽取100人作为样本,采用系统抽样的方法,将全体学生按照1~1000编号,并按照编号顺序平均分成100组(1~10号,11~20号,…,991~1000号).若从第1组抽出的编号为6,则从第10组抽出的编号为(  )
A.86B.96C.106D.97

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若x,y满足约束条件$\left\{\begin{array}{l}x+y≥0\\ x-y+4≥0\\ 0≤x≤4\end{array}\right.$,则z=3x-y的最小值是(  )
A.-5B.-4C.-3D.-2

查看答案和解析>>

同步练习册答案