精英家教网 > 高中数学 > 题目详情
13.已知数列{an}满足a1=15,$\frac{{{a_{n+1}}-{a_n}}}{n}=2$,则$\frac{{a}_{n}}{n}$的最小值为$\frac{27}{4}$.

分析 把已知数列递推式变形,利用累加法求出数列的通项公式,得到$\frac{{a}_{n}}{n}$关于n的函数,然后利用函数单调性求得最小值.

解答 解:由$\frac{{{a_{n+1}}-{a_n}}}{n}=2$,得an+1-an=2n,
∵a1=15,
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1
=15+2+4+…+2(n-1)=15+2×$\frac{n(n-1)}{2}$=n2-n+15.
∴$\frac{{a}_{n}}{n}$=n+$\frac{15}{n}$-1,
令f(x)=x+$\frac{15}{x}-1$,得${f}^{′}(x)=1-\frac{15}{{x}^{2}}=\frac{{x}^{2}-15}{{x}^{2}}$,
∴当n取1,2,3时,n+$\frac{15}{n}$-1减小,当n取大于等于4的自然数时n+$\frac{15}{n}$-1的值增大.
∵n=3时,$\frac{{a}_{n}}{n}$=3+5-1=7;n=4时,$\frac{{a}_{n}}{n}$=4+$\frac{15}{4}$-1=$\frac{27}{4}$.
∴$\frac{{a}_{n}}{n}$的最小值为$\frac{27}{4}$.
故答案为:$\frac{27}{4}$.

点评 本题考查了数列递推式,考查了数列的函数特性,考查了利用函数的单调性求函数的最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,设a>b>c,记x=sinAcosC,y=sinCcosA,z=sinBcosB,试比较x、y、z的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足:an>0,且对一切n∈N*,有a13+a23+…+an3=Sn2,其中Sn为数列{an}的前n项和.
(1)求a1,a2,a3,a4
(2)猜想数列{an}的通项公式,并进行证明;
(3)证明:$\frac{1}{ln{a}_{2}}$+$\frac{1}{ln{a}_{3}}$+…$\frac{1}{ln{a}_{n}}$>$\frac{3{n}^{2}-n-2}{2n(n+1)}$(n≥2,n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知a=$\frac{1}{2}$,b=$\frac{{{{log}_2}3}}{3}$,$c={log_{\frac{1}{2}}}$3,则a,b,c的大小关系为b>a>c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若p,q都为命题,则“p或q为真命题”是“?p且q为真命题”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的函数y=f(x)满足f(x+2)=2f(x),当x∈[0,2]时,$f(x)=\left\{\begin{array}{l}x,x∈[0.1)\\-{x^2}+2x,x∈[1,2]\end{array}\right.$,则函数y=f(x)在[2,4]上的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.用红、黄、蓝、白、黑五种颜色涂在“田”字形的4个小方格内,每格涂一种颜色,相邻两格(有公共变边)涂不同的颜色,如果颜色可以反复使用,则所有涂色方法的种数为(  )
A.120B.240C.260D.360

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知△ABC的内角为A、B、C,其对边分别为a、b、c,B为锐角,向量$\overrightarrow{m}$=(2sinB,-$\sqrt{3}$),$\overrightarrow{n}$=(cos2B,2cos2$\frac{B}{2}$-1),且$\overrightarrow{m}∥\overrightarrow{n}$.
(1)求角B的大小;
(2)如果b=2,求S△ABC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.长方体ABCD-A1B1C1D1中,AB=1,AD=2,AA1=3,则四面体A1BCD的体积为1.

查看答案和解析>>

同步练习册答案