精英家教网 > 高中数学 > 题目详情
15.解不等式
(1)(x-2)(a-x)>0            
(2)$\frac{x+2}{3-x}≥2$.

分析 (1)对a分类讨论,求出其解集即可,
(2)不等式等价于$\left\{\begin{array}{l}{x+2≥2(3-x)}\\{3-x>0}\end{array}\right.$或$\left\{\begin{array}{l}{x+2≤2(3-x)}\\{3-x<0}\end{array}\right.$,解得即可.

解答 解:(1)∵(x-2)(a-x)>0,可化为(x-2)(x-a)<0.
①当a>2时,上述不等式的解集为{x|2<x<a};
②当a=2时,上述不等式可化为(x-2)2<0,∴解集为∅,
③当a<2时,上述不等式的解集为{x|a<x<2}.
(2)$\frac{x+2}{3-x}≥2$等价于$\left\{\begin{array}{l}{x+2≥2(3-x)}\\{3-x>0}\end{array}\right.$或$\left\{\begin{array}{l}{x+2≤2(3-x)}\\{3-x<0}\end{array}\right.$,
解得$\frac{4}{3}$≤x<3,
故不等式的解集为{x|$\frac{4}{3}$≤x<3}.

点评 本题考查了一元二次不等式和分式不等式的解法,正确分类是关键,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\left\{\begin{array}{l}{log_2}({1-x})+1,-1≤x<k\\{x^3}-3x+2,k≤x≤a\end{array}\right.$,若存在k使得函数f(x)的值域为[0,2],则实数a的取值范围是(  )
A.$({1,\sqrt{3}}]$B.(0,1]C.[0,1]D.$[{1,\sqrt{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{AB}=({0,2,1})$,$\overrightarrow{AC}=({-1,1,-2})$,则平面ABC的一个法向量可以是(  )
A.(3,-1,-2)B.(-4,2,2)C.(5,1,-2)D.(5,-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设全集U=R,已知$A=\left\{{x\left|{\frac{2x+3}{x-2}>0}\right.}\right\},B=\left\{{x\left|{|{x-1}|<2}\right.}\right\}$,则A∩B={x|2<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a>0且a≠1,设命题p:函数y=loga(x+1)在区间(-1,+∞)内单调递减;q:曲线y=x2+(2a-3)x+1与x轴有两个不同的交点.如果p或q为真命题,那么a的取值集合是怎样的呢?并写出求解过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x(x>0)}\\{1(x=0)}\\{-x-1(x<0)}\end{array}\right.$
(1)求f{f[f(-1)]}的值;
(2)画出函数的图象;
(3)指出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在[10,20),[20,30),[30,40),[40,50),[50,60)的市民进行问卷调查,由此得到样本频率分布直方图如图所示.
(Ⅰ)求随机抽取的市民中年龄在[30,40)的人数;
(Ⅱ)试根据频率分布直方图估计市民的平均年龄;
(Ⅲ)从不小于40岁的人中按年龄段分层抽样的方法随机  抽取5人,再从得到的5人中抽到2人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.一个袋中装有质地均匀,大小相同的2个黑球和3个白球,从袋中一次任意摸出2个球,则恰有1个是白球的概率为$\frac{3}{5}$,从袋中一次任意摸出3个球,摸出白球个数的数学期望Eξ是1.8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.连续掷两次骰子,以先后看到的点数m,n作为点P的坐标(m,n),那么点P在圆x2+y2=17内部(不包括边界)的概率是$\frac{2}{9}$.

查看答案和解析>>

同步练习册答案