精英家教网 > 高中数学 > 题目详情
7.某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在[10,20),[20,30),[30,40),[40,50),[50,60)的市民进行问卷调查,由此得到样本频率分布直方图如图所示.
(Ⅰ)求随机抽取的市民中年龄在[30,40)的人数;
(Ⅱ)试根据频率分布直方图估计市民的平均年龄;
(Ⅲ)从不小于40岁的人中按年龄段分层抽样的方法随机  抽取5人,再从得到的5人中抽到2人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.

分析 (Ⅰ)先求出随机抽取的市民中年龄段在[30,40)的频率,由此能求出随机抽取的市民中年龄段在[30,40)的人数.
(Ⅱ)年龄段在[40,50),[50,60)的人数分别为15人,10人,从而不小于40岁的人的频数是25人,由此能示出在[50,60)年龄段抽取的人数.
(Ⅲ)由已知X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和EX.

解答 解:(Ⅰ)由图知,随机抽取的市民中年龄段在[30,40)的频率为:
1-10(0.020+0.025+0.015+0.010)=0.3,
∴随机抽取的市民中年龄段在[30,40)的人数为100×0.3=30人.
(Ⅱ)由(1)知:年龄段在[40,50),[50,60)的人数分别为100×0.15=15人,100×0.1=10人,
即不小于40岁的人的频数是25人,
所以在[50,60)年龄段抽取的人数为10×$\frac{5}{25}$=2人.
(Ⅲ)由已知X的可能取值为0,1,2,
P(X=0)=$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}$=$\frac{3}{10}$,
P(X=1)=$\frac{{C}_{2}^{1}{C}_{3}^{1}}{{C}_{5}^{2}}$=$\frac{3}{5}$,
P(X=2)=$\frac{{C}_{2}^{2}}{{C}_{5}^{2}}$=$\frac{1}{10}$,
所以X的分布列为:

 X 0 1 2
 P $\frac{3}{10}$ $\frac{3}{5}$ $\frac{1}{10}$
∴EX=0×$\frac{3}{10}$+1×$\frac{3}{5}$+2×$\frac{1}{10}$=$\frac{4}{5}$.

点评 本题考查频率分布直方图的应用,考查分层抽样的应用,考查离散型随机变量的分布列及数学期望的求法,是中档题,在历年高考中都是必考题型之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.自圆C:(x-3)2+(y+4)2=4外一点P(x,y)引该圆的一条切线,切点为Q,切线的长度等于点P到原点O的长,则点P轨迹方程为(  )
A.8x-6y-21=0B.8x+6y-21=0C.6x+8y-21=0D.6x-8y-21=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点A(-1,-1),B(1,3),C(1,5),D(2,7).
(1)向量$\overrightarrow{AB}$与$\overrightarrow{CD}$平行吗?
(2)向量$\overrightarrow{AC}$与$\overrightarrow{AB}$平行吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解不等式
(1)(x-2)(a-x)>0            
(2)$\frac{x+2}{3-x}≥2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,AB∥CD,AB=BC=$\frac{1}{2}$CD,E为AA1的中点.
(1)证明:BE∥CD1
(2)若∠ADC=45°,CD=CC1,求证:平面EB1C1⊥平面EBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设x,y∈R,复数z=x+yi,且满足|z|2+(z+$\overline{z}$)i=$\frac{3-i}{2+i}$,试求x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.过双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的右焦点F作双曲线的一条渐近线的垂线,垂足为E,O为坐标原点,若∠OFE=2∠EOF,则b=(  )
A.$\frac{1}{2}$B.$\sqrt{3}$C.2D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆C:x2+y2=1,直线l:y=k(x+2),在[-1,1]上随机选取一个数k,则事件“直线l与圆C相离
”发生的概率为(  )
A.$\frac{1}{2}$B.$\frac{2-\sqrt{2}}{2}$C.$\frac{3-\sqrt{3}}{3}$D.$\frac{2-\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,使得|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|成立的一个充分非必要条件是(  )
A.$\overrightarrow{a}$∥$\overrightarrow{b}$B.$\overrightarrow{a}$+2$\overrightarrow{b}$=0C.$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$=0D.2$\overrightarrow{a}$+$\overrightarrow{b}$=0

查看答案和解析>>

同步练习册答案