精英家教网 > 高中数学 > 题目详情
函数f(x)=ax+
1
x
,且f(1)=3.
(1)求f(x)的表达式;   
(2)证明f(x)在(1,+∞)上是增函数.
考点:函数单调性的判断与证明,函数解析式的求解及常用方法
专题:函数的性质及应用
分析:(1)由f(1)=3方程求解即可,(2)利用导数符号证明即可.
解答: 解:(1)函数f(x)=ax+
1
x
,且f(1)=3则有a+1=3,解得a=2,所以函数f(x)=2x+
1
x
,(x≠0),
(2)证明:由(1)可知f(x)=2x+
1
x
,则f′(x)=2-
1
x2

又∵x∈(1,+∞),
∴0<
1
x2
<1,
∴f′(x)=2-
1
x2
>0,
∴f(x)在(1,+∞)上是增函数.
点评:本题考查函数的单调性的证明,利用导数证明函数的单调性是常用方法,要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}中,a1=1,an+1+an=(-1)n•2n(n∈N*,n≥1),Sn是数列{an}的前n项和,则S10=(  )
A、682B、-682
C、62D、-62

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合S={A0,A1,A2,A3},在S上定义运算⊕:Ai⊕Aj=Ak,其中k为i+j被4除的余数(其中i,j=0,1,2,3),则满足关系式(x⊕x)⊕A2=A0的x(x∈S)的个数为(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点M,若△F1F2M为等腰直角三角形,则椭圆的离心率为(  )
A、
2
2
B、
2
-1
C、2-
2
D、
2
-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x+
π
3
),若函数g(x)的最小正周期是π,且当x∈[-
π
2
π
2
]时g(x)=f(
x
2
),则关于x的方程g(x)=
3
2
的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知t∈R,圆C:x2+y2-2tx-2t2y+4t-4=0.
(1)若圆C的圆心在直线x-y+2=0上,求圆C的方程;
(2)圆C是否过定点?如果过定点,求出定点的坐标;如果不过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人参加某种选拔测试.在备选的5道题中,甲能答对其中的2道题,乙能答对其中的3道题.规定每次考试都从备选的5道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.
(Ⅰ)求乙得15分的概率;
(Ⅱ)求甲入选的概率和乙入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足
x≥0
x≤y+1
y≤1
,则x+y的最大值是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

将六进制的数化为十进制和二进制:210(6)=
 
(10)=
 
(2)

查看答案和解析>>

同步练习册答案