精英家教网 > 高中数学 > 题目详情
如图所示,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、CD和SC的中点.求证:
(1)直线EG∥平面BDD1B1
(2)平面EFG∥平面BDD1B1
考点:直线与平面平行的判定,平面与平面平行的判定
专题:空间位置关系与距离
分析:(1)连结SB,由已知得EG∥SB,由此能证明直线EG∥平面BDD1B1
(2)连结SD,由已知得FG∥SD,从而FG∥平面BDD1B1,又直线EG∥平面BDD1B1,由此能证明平面EFG∥平面BDD1B1
解答: 证明:(1)如图,连结SB,
∵E、G分别是BC、SC的中点,
∴EG∥SB,
又SB?平面BDD1B1,EG不包含于平面BDD1B1
∴直线EG∥平面BDD1B1
(2)如图,连结SD,
∵F,G分别是DC、SC的中点,∴FG∥SD,
又SD?平面BDD1B1,FG不包含于平面BDD1B1
∴FG∥平面BDD1B1
又直线EG∥平面BDD1B1,且直线EG?平面EFG,直线FG?平面EFG,
EG∩FG=G,
∴平面EFG∥平面BDD1B1
点评:本题考查直线与平面平行的证明,考查平面与平面平行的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组情况与频数如下:.
(1)完成频率分布表;
(2)画出频率分布直方图以及频率分布折线图;
(3)据上述图表,估计数据落在[10.95,11.35)范围内的可能性;
(4)数据小于11.20的可能性是百分之几
频率分布表如下:
分组频数频率
[10.75,10.85)30.03
[10.85,10.95)9
[10.95,11.05)130.13
[11.05,11.15)160.16
[11.15,11.25)
[11.25,11.35)200.20
[11.35,11.45)70.07
[11.45,11.55)40.04
[11.55,11.65]0.02
合计1001.00

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),设f(x)=2
a
b
+m+1(m∈R);
(Ⅰ)求函数f(x)在x∈[0,π]上的单调递减区间;
(Ⅱ)当x∈[0,
π
6
]时,-4<f(x-
π
6
)<4恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)求复数z=
1
1-i
的共轭复数
(2)∫
 
2
0
|1-x|dx.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=2sin(
1
2
x-
π
6
)的对称轴和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
(1)求证:圆心O在直线AD上;
(2)若BC=2,求GC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,P为双曲线左支上的任意一点,若|PF2|=2|PF1|,且△PF1F2的周长为9a,则双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A(-1,2,3),B(2,-2,3),C(
1
2
5
2
,3),则AB边上的中线CD的长是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z=a+
2i
1+i
,(i为虚数单位,a∈R)是纯虚数,则a=
 

查看答案和解析>>

同步练习册答案