精英家教网 > 高中数学 > 题目详情
20.一个小球从100米高处自由落下,每次着地后又跳回到原高度的一半再落下.执行下面的程序框图,则输出的S表示的是(  )
A.小球第10次着地时向下的运动共经过的路程
B.小球第11次着地时向下的运动共经过的路程
C.小球第10次着地时一共经过的路程
D.小球第11次着地时一共经过的路程

分析 分析程序框图的运行过程,知程序运行后输出的S
是小球第10次着地时一共经过的路程.

解答 解:执行该程序框图知,该程序运行后输出的是
S=2×(100+50+25+…+$\frac{100}{{2}^{9}}$)-100,
它表示小球第10次着地时一共经过的路程.
故选:C.

点评 本题考查了利用程序框图进行累加计算的问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设常数λ>0,a>0,f(x)=$\frac{{x}^{2}}{λ+x}$-alnx
(1)若f(x)在x=λ处取得极小值为0,求λ和a的值;
(2)对于任意给定的正实数λ、a,证明:存在实数x0,当x>x0时,f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.执行如图所示的伪代码,若输出的y值为1,则输入x的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}前5项和为50,a7=22,数列{bn}的前n项和为Sn,b1=1,bn+1=3Sn+1.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若数列{cn}满足$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$,n∈N*,求c1+c2+…+c2017的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数$z=\frac{-1+i}{2-i}$的虚部为(  )
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{1}{5}$D.$-\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.漳州水仙鳞茎硕大,箭多花繁,色美香郁,素雅娟丽,有“天下水仙数漳州”之美誉.现某水仙花雕刻师受雇每天雕刻250粒水仙花,雕刻师每雕刻一粒可赚1.2元,如果雕刻师当天超额完成任务,则超出的部分每粒赚1.7元;如果当天未能按量完成任务,则按实际完成的雕刻量领取当天工资.
(I)求雕刻师当天收入(单位:元)关于雕刻量n(单位:粒,n∈N)的函数解析式f(n);
(Ⅱ)该雕刻师记录了过去10天每天的雕刻量n(单位:粒),整理得如表:
雕刻量n210230250270300
频数12331
以10天记录的各雕刻量的频率作为各雕刻量发生的概率.
(ⅰ)求该雕刻师这10天的平均收入;
(ⅱ)求该雕刻师当天收入不低于300元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2.
(1)求A1到平面AB1D距离;
(2)求D到平面A1BD1距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A,B,C的对边分别为a,b,c,且a,b,c成等比数列,若tan B=$\frac{3}{4}$,$\frac{cosA}{sinA}$+$\frac{cosC}{sinC}$的值为(  )
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=lnx-x3与g(x)=x3-ax的图象上存在关于x轴的对称点,则实数a的取值范围为(  )
A.(-∞,e)B.(-∞,e]C.$(-∞,\frac{1}{e})$D.$(-∞,\frac{1}{e}]$

查看答案和解析>>

同步练习册答案