精英家教网 > 高中数学 > 题目详情
11.执行如图所示的伪代码,若输出的y值为1,则输入x的值为-1.

分析 分析出算法的功能是求分段函数f(x)的值,
根据输出的值为1,分别求出当x≤0时和当x>0时的x值即可.

解答 解:由程序语句知:算法的功能是求
f(x)=$\left\{\begin{array}{l}{{2}^{x+1},x≥0}\\{2{-x}^{2},x<0}\end{array}\right.$的值,
当x≥0时,y=2x+1=1,解得x=-1,不合题意,舍去;
当x<0时,y=2-x2=1,解得x=±1,应取x=-1;
综上,x的值为-1.
故答案为:-1.

点评 本题考查了选择结构的程序语句应用问题,根据语句判断算法的功能是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知命题p:?x0∈R,使tanx0=2;,命题q:?x∈R,都有x2+2x+1>0,则(  )
A.命题p∨q为假命题B.命题p∧q为真命题
C.命题p∧(¬q)为真命题D.命题p∨(¬q)为假命题
E.命题p∨q为假命题   

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设F1,F2为双曲线$Γ:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点,P为Γ上一点,PF2与x轴垂直,直线PF1的斜率为$\frac{3}{4}$,则双曲线Γ的渐近线方程为(  )
A.y=±xB.$y=±\sqrt{2}x$C.$y=±\sqrt{3}x$D.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知一组数据3,6,9,8,4,则该组数据的方差是5.2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知两个无穷数列{an}和{bn}的前n项和分别为Sn,Tn,a1=1,S2=4,对任意的n∈N*,都有3Sn+1=2Sn+Sn+2+an
(1)求数列{an}的通项公式;
(2)若{bn}为等差数列,对任意的n∈N*,都有Sn>Tn.证明:an>bn
(3)若{bn}为等比数列,b1=a1,b2=a2,求满足$\frac{{a}_{n}+2{T}_{n}}{{b}_{n}+2{S}_{n}}$=ak(k∈N*)的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,在直三棱柱ABC-A1B1C1中,AB=1,BC=2,BB1=3,∠ABC=90°,点D为侧棱BB1上的动点,当AD+DC1最小时,三棱锥D-ABC1的体积为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点P的坐标(x,y)满足$\left\{\begin{array}{l}x≥-1\\ y≤2\\ 2x-y+2≤0\end{array}\right.$过点P的直线l与圆O:x2+y2=7交于A,B两点,则|AB|的最小值为(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个小球从100米高处自由落下,每次着地后又跳回到原高度的一半再落下.执行下面的程序框图,则输出的S表示的是(  )
A.小球第10次着地时向下的运动共经过的路程
B.小球第11次着地时向下的运动共经过的路程
C.小球第10次着地时一共经过的路程
D.小球第11次着地时一共经过的路程

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在△ABC中,D为线段AB上的点,且AB=3AD,AC=AD,CB=3CD,则$\frac{sin2B}{sinA}$=$\frac{7}{9}$.

查看答案和解析>>

同步练习册答案