精英家教网 > 高中数学 > 题目详情
3.已知点P的坐标(x,y)满足$\left\{\begin{array}{l}x≥-1\\ y≤2\\ 2x-y+2≤0\end{array}\right.$过点P的直线l与圆O:x2+y2=7交于A,B两点,则|AB|的最小值为(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

分析 由约束条件作出可行域,求出可行域内到原点距离最远的点,然后结合弦心距、圆的半径及弦长间的关系得答案.

解答 解:不等式可行域$\left\{\begin{array}{l}x≥-1\\ y≤2\\ 2x-y+2≤0\end{array}\right.$如图所示
联立$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$,解得D(-1,2).
由图可知,可行域内的点中,
D 到原点的距离最大为$\sqrt{5}$,
∴|AB|的最小值为2$\sqrt{7-5}$=2$\sqrt{2}$.
故选B

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,训练了直线与圆位置关系的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设向量$\overrightarrow{a}$=(4sin$\frac{ω}{2}$x,1),$\overrightarrow{b}$=($\frac{1}{2}$cos$\frac{ω}{2}$x,-1)(ω>0),若函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+1在区间[-$\frac{π}{5}$,$\frac{π}{4}$]上单调递增,则实数ω的取值范围为(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|2x-a|+|2x-1|,a∈R.
(I)当a=3时,求关于x的不等式f(x)≤6的解集;
(II)当x∈R时,f(x)≥a2-a-13,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.执行如图所示的伪代码,若输出的y值为1,则输入x的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a,b,c为正实数,且$a+2b≤8c,\frac{2}{a}+\frac{3}{b}≤\frac{2}{c}$,则$\frac{3a+8b}{c}$的取值范围为[27,30].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}前5项和为50,a7=22,数列{bn}的前n项和为Sn,b1=1,bn+1=3Sn+1.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若数列{cn}满足$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$,n∈N*,求c1+c2+…+c2017的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数$z=\frac{-1+i}{2-i}$的虚部为(  )
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{1}{5}$D.$-\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2.
(1)求A1到平面AB1D距离;
(2)求D到平面A1BD1距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.据记载,在公元前3世纪,阿基米德已经得出了前n个自然数平方和的一般公式.如图是一个求前n个自然数平方和的算法流程图,若输入x的值为1,则输出的S的值为14.

查看答案和解析>>

同步练习册答案