精英家教网 > 高中数学 > 题目详情
15.在用反证法证明“在△ABC中,若∠C是直角,则∠A和∠B都是锐角”的过程中,应该假设(  )
A.∠A和∠B都不是锐角B.∠A和∠B不都是锐角
C.∠A和∠B都是钝角D.∠A和∠B都是直角

分析 根据用反证法证明数学命题的步骤,应先假设命题的反面成立,求出要证明题的否定,即为所求.

解答 解:用反证法证明数学命题时,应先假设命题的反面成立,
而命题:“∠A和∠B都是锐角”的否定是∠A和∠B不都是锐角,
故选:B.

点评 本题主要考查反证法的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ln(x+$\frac{3}{2}$)+$\frac{2}{x}$.
(1)求函数f(x)的极值.
(2)是否存在正数k,使得关于x的方程f(x)=k1nx有两个不相等的实根?如果存在,求k的取值范围;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为了得到函数$y=cos(x+\frac{π}{5})$,x∈R的图象,只需把余弦曲线y=cosx上的所有的点(  )
A.向左平移$\frac{1}{5}$个单位长度B.向右平移$\frac{π}{5}$个单位长度
C.向右平移$\frac{1}{5}$个单位长度D.向左平移$\frac{π}{5}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(文)给出命题:
①函数$y=cos(\frac{2}{3}x+\frac{7π}{2})$是奇函数;
②若α、β都是第一象限角且α<β,则tanα<tanβ;
③函数$y=2sin(\frac{2}{3}x+\frac{π}{3})$在区间$[-π,\frac{π}{2}]$上的最小值是-2,最大值是$\sqrt{3}$;
④直线$x=\frac{π}{8}$是函数$y=\frac{1}{2}sin(5x+\frac{7π}{8})$图象的一条对称轴.
其中正确命题的序号是①④.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知随机变量X服从正态分布$N(6,\frac{1}{3})$,则X的数学期望E(X)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.从4名男生4名女生中选3位代表,其中至少两名女生的选法有28 种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.证明下列不等式:
(1)$\sqrt{6}$+$\sqrt{7}$>$2\sqrt{2}+\sqrt{5}$            
(2)${a}^{2}+{b}^{2}+3≥ab+\sqrt{3}(a+b)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,$cos(\frac{π}{4}+A)=\frac{5}{13}$,则sin2A=$\frac{119}{169}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:kg),并将所得数据分组,画出频率分布直方图(如图所示).
(1)在下面表格中填写相应的频率;
分组频率
[1.00,1.05)
[1.05,1.10)
[1.10,1.15)
[1.15,1.20)
[1.20,1.25)
[1.25,1.30)
(2)估计数据落在[1.15,1.30)中的概率为多少;
(3)将上面捕捞的100条鱼分别作一记号后再放回水库.几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条.请根据这一情况来估计该水库中鱼的总条数.

查看答案和解析>>

同步练习册答案