精英家教网 > 高中数学 > 题目详情
7.为了得到函数$y=cos(x+\frac{π}{5})$,x∈R的图象,只需把余弦曲线y=cosx上的所有的点(  )
A.向左平移$\frac{1}{5}$个单位长度B.向右平移$\frac{π}{5}$个单位长度
C.向右平移$\frac{1}{5}$个单位长度D.向左平移$\frac{π}{5}$个单位长度

分析 根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:把余弦曲线y=cosx上的所有的点向左平移$\frac{π}{5}$个单位长度,
可得函数y=cos(x+$\frac{π}{5}$)的图象,
故选:D.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年河南省新乡市高二上学期入学考数学卷(解析版) 题型:选择题

某公司有1000名员工.其中高层管理人员为50名,属于高收入者;中层管理人员为150名,属于中等收入者;一般员工800名,属于低收入者.要对该公司员工的收入情况进行调查,欲抽取200名员工进行调查,应从中层管理人员中抽取的人数为

A.10 B.15 C.20 D.30

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an},an=(2n+m)+(-1)n(3n-2)(m∈N*,m与n无关),则$\sum_{i=1}^{2m}$a2i-1的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知角θ的终边过点(4,-3),则cos(π-θ)=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知直线y=k(x-1)+1与圆C:x2-4x+y2+1=0交于A,B两点,则|AB|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$y=\frac{1}{1-sinx}$的定义域为$\left\{{x\left|{\;}\right.x≠\frac{π}{2}+2kπ,k∈Z}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在平行四边形ABCD中,$DE=\frac{1}{2}EC$,F为BC的中点,G为EF上的一点,且$\overrightarrow{AG}=m\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$,则实数m的值为(  )
A.$\frac{7}{9}$B.$-\frac{2}{9}$C.$-\frac{1}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在用反证法证明“在△ABC中,若∠C是直角,则∠A和∠B都是锐角”的过程中,应该假设(  )
A.∠A和∠B都不是锐角B.∠A和∠B不都是锐角
C.∠A和∠B都是钝角D.∠A和∠B都是直角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设数列{an}的前n项和为Sn,a1=$\frac{1}{3}$,且对任意m,n∈N*,am+n=am•an,若Sn<a恒成立,则a的最小值为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案