精英家教网 > 高中数学 > 题目详情
20.若{an}是等比数列,a2=2,a5=$\frac{1}{4}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求和:a1a2+a2a3+…+anan+1(n∈N*).

分析 (Ⅰ)通过q3=$\frac{{a}_{5}}{{a}_{2}}$及题意,可得公比和首项,进而可得结论;
(Ⅱ)通过(Ⅰ)可知anan+1=$(\frac{1}{2})^{2n-5}$,进而可得数列{anan+1}是以8为首项,$\frac{1}{4}$为公比的等比数列,计算即得结论.

解答 解:(Ⅰ)根据题意可得q3=$\frac{{a}_{5}}{{a}_{2}}$=$\frac{1}{8}$,
∴q=$\frac{1}{2}$,a1=$\frac{{a}_{2}}{q}$=4,
∴数列{an}的通项为:an=4•$(\frac{1}{2})^{n-1}$=$(\frac{1}{2})^{n-3}$;
(Ⅱ)由(Ⅰ)可知anan+1=$(\frac{1}{2})^{n-3}$•$(\frac{1}{2})^{n-2}$=$(\frac{1}{2})^{2n-5}$,
又∵a1a2=$(\frac{1}{2})^{2-5}$=8,
∴数列{anan+1}是以8为首项,$\frac{1}{4}$为公比的等比数列,
∴a1a2+a2a3+…+anan+1=8•$\frac{1-\frac{1}{{4}^{n}}}{1-\frac{1}{4}}$=$\frac{32}{3}$(1-$\frac{1}{{4}^{n}}$).

点评 本题考查求等比数列的通项及求和,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设a>0,b>0.若$\sqrt{3}$是3a与3b的等比中项,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为(  )
A.4B.6C.2$\sqrt{3}$D.2$\root{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.用火柴棒摆“金鱼”,如图所示:

按照上面的规律,第⑪个“金鱼”图需要火柴棒的根数是68.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将编号为1、2、3、4的四个小球任意地放入A、B、C、D四个小盒中,每个盒中放球的个数不受限制,恰好有一个盒子是空的概率为(  )
A.$\frac{9}{16}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{7}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若直线y=2x-b在x轴上的截距为1,则b=(  )
A.1B.-1C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$y=cos(x+\frac{π}{12})$的图象的一条对称轴的方程是(  )
A.$x=\frac{5π}{12}$B.x=$\frac{π}{6}$C.x=$\frac{π}{12}$D.x=-$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等比数列{an}满足:a2=4,公比q=2,数列{bn}的前n项和为Sn,且Sn=$\frac{4}{3}$bn-$\frac{2}{3}$an+$\frac{2}{3}$(n∈N*).
(1)求数列{an}和数列{bn}的通项an和bn
(2)设Pn=$\frac{a_n}{S_n}(n∈{N^*})$,证明:p1+p2+p3+…+pn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2+$\frac{1}{x}$,其中a为常数
(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;
(2)若h(x)=f(x)-x-$\frac{1}{x}$>0在[1,2]上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.先将函数y=sin2x的图象向右平移$\frac{π}{3}$个单位长度,再作所得的图象关于y轴的对称图形,则最后函数图象的解析式为(  )
A.$y=sin(-2x-\frac{2π}{3})$B.$y=sin(-2x+\frac{2π}{3})$C.$y=sin(-2x-\frac{π}{3})$D.$y=sin(-2x+\frac{π}{3})$

查看答案和解析>>

同步练习册答案