【题目】已知奇函数
满足
,则( )
A. 函数
是以
为周期的周期函数 B. 函数
是以
为周期的周期函数
C. 函数
是奇函数 D. 函数
是偶函数
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为矩形,平面
平面
,
,
,
为
的中点..
(1)求证:平面
平面
;
(2)
,在线段
上是否存在一点
,使得二面角
的余弦值为
.请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点坐标为别为
,
,离心率是
. 椭圆
的左、右顶点分别记为
,
.点
是椭圆
上位于
轴上方的动点,直线
,
与直线
分别交于
,
两点.
(Ⅰ)求椭圆
的方程.
(Ⅱ)求线段
长度的最小值.
(Ⅲ)当线段
的长度最小时,在椭圆
上的点
满足:
的面积为
.试确定点
的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin ωx·cos ωx+
cos2ωx-
(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为
.
(Ⅰ)求f(x)的表达式;
(Ⅱ)将函数f(x)的图象向右平移
个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
.
(1)当
时,求函数
在
处的切线方程;
(2)若函数
存在两个极值点
,求
的取值范围;
(3)若不等式
对任意的实数
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在
,
,
,
,
,
(单位:克)中,其频率分布直方图如图所示.
![]()
(1)按分层抽样的方法从质量落在
,
的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;
(2)以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:
A.所有蜜柚均以40元/千克收购;
B.低于2250克的蜜柚以60元/个收购,高于或等于2250克的以80元/个收购.
请你通过计算为该村选择收益最好的方案.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com