分析 由已知条件推导出b=$\sqrt{2}$a,k1k2=$\frac{y}{x+a}•\frac{y}{x-a}$=2,0<k3<$\sqrt{2}$,由此能求出m=k1k2k3的取值范围.
解答 解:∵双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{3}$,
∴e=$\frac{c}{a}$=$\sqrt{3}$,∴b=$\sqrt{2}$a,
设P(x,y),∵点P为双曲线C在第一象限的任意一点,∴$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,
∵A,B为双曲线C的左右顶点,点O为坐标原点,PA,PB,PO的斜率为k1,k2,k3,
∴k1k2=$\frac{y}{x+a}•\frac{y}{x-a}$=2,
又∵双曲线渐近线为y=$±\sqrt{2}$x,∴0<k3<$\sqrt{2}$,
∴0<m=k1k2k3<2$\sqrt{2}$,
故答案为:(0,2$\sqrt{2}$).
点评 本题考查斜率乘积的取值范围的求法,是中档题,解题时要认真审题,要熟练掌握双曲线的简单性质.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{4}$ | B. | $\frac{9}{4}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 120° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com