精英家教网 > 高中数学 > 题目详情
三角形ABC中,AC=BC=
2
2
AB,四边形ABED是正方形,平面ABED⊥底面ABC,若G、F分别是EC、BD的中点.
(1)求证:GF∥底面ABC;
(2)求证:AC⊥平面EBC.
考点:直线与平面垂直的判定,直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:(1)证法一:证明一条直线与一个平面平行,除了可以根据直线与平面平行的判定定理以外,通常还可以通过平面与平面平行进行转化,比如取BE的中点H,连接HF、GH,根据中位线定理易证得:平面HGF∥平面ABC,进一步可得:GF∥平面ABC.
证法二:根据直线与平面平行的判定定理可知:如果不在一个平面内的一条直线和平面内的一条直线平行,那么直线和这个平面平行.故只需在平面ABC中找到与GF平行的直线即可.因为G、F分别是EC、BD的中点,故平移是可以通过构造特殊的四边形、三角形来实现.
证法三:根据直线与平面平行的判定定理可知:如果不在一个平面内的一条直线和平面内的一条直线平行,那么直线和这个平面平行.故只需在平面ABC中找到与GF平行的直线即可.因为G、F分别是EC、BD的中点,所以构造中位线是常用的找到平行直线的方法.
(2)证明直线与平面垂直,关键要找到两条相交直线与之都垂直.有时候题目中没有现成的直线与直线垂直,需要我们先通过直线与平面垂直或者平面与平面垂直去转化一下.由第一问可知:GF∥平面ABC,而平面ABED⊥平面ABC,所以BE⊥平面ABC,所以BE⊥AC;又由勾股定理可以证明:AC⊥BC.
解答: 解:(1)证法一:取BE的中点H,连接HF、GH,(如图)

∵G、F分别是EC和BD的中点
∴HG∥BC,HF∥DE,(2分)
又∵ADEB为正方形∴DE∥AB,从而HF∥AB
∴HF∥平面ABC,HG∥平面ABC,HF∩HG=H,
∴平面HGF∥平面ABC
∴GF∥平面ABC(5分)
证法二:取BC的中点M,AB的中点N连接GM、FN、MN
(如图)

∵G、F分别是EC和BD的中点
∴GM∥BE,且GM=
1
2
BE,NF∥DA,且NF=
1
2
DA(2分)
又∵ADEB为正方形∴BE∥AD,BE=AD
∴GM∥NF且GM=NF
∴MNFG为平行四边形
∴GF∥MN,又MN?平面ABC,
∴GF∥平面ABC(5分)
证法三:连接AE,
∵ADEB为正方形,
∴AE∩BD=F,且F是AE中点,(2分)
∴GF∥AC,
又AC?平面ABC,
∴GF∥平面ABC(5分)
(2)∵ADEB为正方形,∴EB⊥AB,∴GF∥平面ABC(5分)
又∵平面ABED⊥平面ABC,∴BE⊥平面ABC(7分)
∴BE⊥AC
又∵CA2+CB2=AB2
∴AC⊥BC,
∵BC∩BE=B,
∴AC⊥平面BCE(9分)
点评:本小题主要考查空间线面关系、面面关系、几何体的体积等知识,考查数形结合、化归的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,考查了转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知空间四边形OABC,棱OA,OB,OC相互垂直,且OA=OB=BC=1,N是OC的中点,点M在AB上,且MN⊥AB,求MN与AB的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中有大小互不相同的4个红球和6个白球,从中取出4个球.
(1)若取出的球必须有两种颜色,则有多少种不同的取法?
(2)若取出的红球个数不少于白球个数,则有多少种不同的取法?
(3)取出1个红球记1分,取出1个白球记2分,若取出4球的总分不低于5分,则有多少种不同的取法?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以下四个函数:①y=kx(k∈R);②y=xn(n为奇数);③y=x2cosx;④y=2x+sinx.其中图象可以平分圆O:x2+y2=1的面积的函数个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的方程为x2+
y2
a2
=1(0<a<1),椭圆上离顶点A(0,a)的最远点为(0,-a),则实数a的取值范围是(  )
A、0<a<1
B、
2
2
≤a<1
C、
3
3
≤a<1
D、0<a<
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

圆锥的轴截面是等腰直角三角形,侧面积是16
2
π,则圆锥的体积是(  )
A、
64π
3
B、
128π
3
C、64π
D、128
2
π

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|1≤x≤2},B={x|x≤a},若A⊆B,则a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOY中,点A(x1,y1)在单位圆O上.∠xOA=α且α∈(
π
6
π
2
).
(1)若cos(α+
π
3
)=-
2
2
3
,求y1的值;
(2)如图表示,B(x2,y2)也是单位圆O上的点,且∠AOB=
π
3
,过点A,B分别作x轴的垂线,垂足为C,D,记△AOC的面积为S1,△BOD的面积为S2,设f(α)=S1+S2,求函数f(α)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

要得到如图所示的几何体,只需将图所示的三角形绕直线l旋转一周,则可以是(  )
A、
B、
C、
D、

查看答案和解析>>

同步练习册答案