精英家教网 > 高中数学 > 题目详情
8.(x+1)(x-2)5的展开式中含x3项的系数为-40.

分析 利用(x-2)5展开式的二次项与x+1的一次项相乘,展开式的三次项与x+1的常数项相乘,即可得到(x+1)(x-2)5的展开式中含x3项的系数.

解答 解:∵(x-2)5展开式的通项公式为
Tr+1=${C}_{5}^{r}$•x5-r•(-2)r
令5-r=2,解得r=3,
∴展开式中含x2项的系数为${C}_{5}^{3}$•(-2)3=-80;
令5-r=3,解得r=2,
∴展开式中含x3项的系数为${C}_{5}^{2}$•(-2)2=40;
∴(x+1)(x-2)5的展开式中含x3项的系数为
1×(-80)+1×40=-40.
故答案为:-40.

点评 本题考查了二项式定理的应用问题,也考查了利用展开式的通项公式求指定项的系数,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C的对边分别为a,b,c,且cos2$\frac{B+C}{2}$=$\frac{1}{5}$,△ABC的面积为4.
(Ⅰ)求$\overrightarrow{AB}$•$\overrightarrow{AC}$的值;
(Ⅱ)若2sinB=5sinC,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆一焦点与短轴两端连线的夹角为90°,则椭圆的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在复平面内,复数z=$\frac{1+2i}{1-i}$(i是虚数单位)对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.1+(1-x)2+(1-x)3+(1-x)4+(1-x)5展开式中x2项的系数为(  )
A.-19B.19C.20D.-20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≤0\\ x+3y-3≥0\end{array}\right.$,则z=x+y+1的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直角坐标平面上两条直线方程分别为l1:a1x+b1y+c1=0,l2:a2x+b2y+c2=0,那么“$|\begin{array}{l}{{a}_{1}}&{{b}_{1}}\\{{a}_{2}}&{{b}_{2}}\end{array}|$=0是“两直线l1,l2平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=2sin$\frac{x}{2}$的定义域为[a,b],值域为[-1,2],则b-a的取值范围是(  )
A.[$\frac{5π}{3}$,2π]B.[$\frac{4π}{3}$,2π]C.[$\frac{4π}{3}$,$\frac{8π}{3}$]D.[2π,$\frac{8π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某学校一天共排7节课(其中上午4节、下午3节),某教师某天高三年级1班和2班各有一节课,但他要求不能连排2节课(其中上午第4节和下午第1节不算连排),那么该教师这一天的课的所有可能的排法种数共有240种.

查看答案和解析>>

同步练习册答案