精英家教网 > 高中数学 > 题目详情
3.1+(1-x)2+(1-x)3+(1-x)4+(1-x)5展开式中x2项的系数为(  )
A.-19B.19C.20D.-20

分析 利用二项式定理即可得出.

解答 解:由1+(1-x)2+(1-x)3+(1-x)4+(1-x)5
它的展开式中x2项系数为$C_2^2+C_3^2+C_4^2+C_5^2$=1+3+6+10=20.
故选:C.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设P(x,y)满足$\left\{\begin{array}{l}{x-2y≥0}\\{x+2y≥0}\end{array}\right.$,且P点到两直线x-2y=0,x+2y=0距离之和不大于$\sqrt{5}$,则x-y的最大值为(  )
A.$\frac{17}{3}$B.$\frac{15}{4}$C.$\frac{25}{4}$D.$\frac{11}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a=(2,-3),\overrightarrow b=(3,2)$,则$\overrightarrow a$与$\overrightarrow b$(  )
A.平行且同向B.垂直C.不垂直也不平行D.平行且反向

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=sin(π+$\frac{x}{2}$)cos(3$π-\frac{x}{2}$)-$\frac{\sqrt{3}}{2}$cosx-1,x∈R,求该函数的最小正周期,最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC的内角A,B,C的对边分别是a,b,c,若b2=ac,c=2a,则cosC=(  )
A.$\frac{{\sqrt{2}}}{4}$B.$-\frac{{\sqrt{2}}}{4}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(x+1)(x-2)5的展开式中含x3项的系数为-40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设向量$\overrightarrow{a}$=(-1,-2),$\overrightarrow{b}$=(m,m+1),$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{b}$|等于(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{5}{9}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求以圆x2+y2-4x-8=0的圆心为右焦点,长轴长为8的椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数f(x)=2sin(3x+φ)(-π<φ<π)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数g(x)的图象,且对任意的x∈R有g(x)+g($\frac{π}{4}$)≥0,则g(x)的单调递增区间为(  )
A.[$\frac{kπ}{3}$+$\frac{π}{4}$,$\frac{kπ}{3}$+$\frac{5π}{12}$],k∈ZB.[$\frac{kπ}{3}$+$\frac{π}{12}$,$\frac{kπ}{3}$+$\frac{π}{4}$],k∈Z
C.[$\frac{4kπ}{3}$+$\frac{π}{4}$,$\frac{4kπ}{3}$+$\frac{11π}{12}$],k∈ZD.[$\frac{4kπ}{3}$-$\frac{5π}{12}$,$\frac{4kπ}{3}$+$\frac{π}{4}$],k∈Z

查看答案和解析>>

同步练习册答案