精英家教网 > 高中数学 > 题目详情
10.求函数f(x)=x2-4|x|+3的单调区间并作出函数图象.

分析 函数f(x)=x2-4|x|+3的图象由函数函数y=x2-4x+3的图象做一次横向对折变换得到,结合二次函数的图象和性质及函数图象的对折变换法则,可得答案.

解答 解:函数f(x)=x2-4|x|+3的图象由函数函数y=x2-4x+3的图象做一次横向对折变换得到:
如函数f(x)=x2-4|x|+3的图象如下图所示:

由图可得:函数f(x)=x2-4|x|+3的单调递增区间为:(-2,0)和(2,+∞),
函数f(x)=x2-4|x|+3的单调递减区间为:(-∞,-2)和(0,2).

点评 本题考查的知识点是函数的图象变换,二次函数的图象和性质,熟练掌握函数图象的对折变换法则,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.要证明$\sqrt{3}$+$\sqrt{7}$<2+$\sqrt{6}$所选择的方法有以下几种,其中合理的是(  )
A.综合法B.分析法C.类比法D.归纳法

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,A、B、C所对的边分别是a、b、c,若$\overrightarrow{m}$=(b,3a),$\overrightarrow{n}$=(c,b),且$\overrightarrow{m}$∥$\overrightarrow{n}$,C-A=$\frac{π}{2}$,求B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,已知a2-(b2-c2)=(2-$\sqrt{3}$)bc,sinA•sinB=cos2$\frac{C}{2}$,
(1)求角A,角B;
(2)求sinB•sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某几何体的正视图与俯视图如图所示,若俯视图中的多边形为正六边形,则该几何体的侧视图的面积为(  )
A.$\frac{15}{2}$B.6+$\sqrt{3}$C.$\frac{3}{2}$+3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.试求与圆C1:(x-1)2+y2=1相外切,且与直线x+$\sqrt{3}$y=0相切于点Q(3,-$\sqrt{3}$)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在锐角△ABC中,∠A、∠B、∠C的对边分别为a、b、c,已知2csinA=$\sqrt{3}$a,sin(B-A)=cosC.
(1)求∠A、∠B、∠C;
(2)若△ABC的面积为3+$\sqrt{3}$,求a、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知复数Z满足|Z+4|=|Z+4i|且Z+$\frac{14-Z}{Z-1}$<0,求$\overline{Z}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.关于x的方程$\sqrt{2}$sin(x+$\frac{π}{4}$)=2m在[0,π]内有相异两实根,则实数m的取值范围为[$\frac{1}{2}$,$\frac{\sqrt{2}}{2}$).

查看答案和解析>>

同步练习册答案