精英家教网 > 高中数学 > 题目详情
4.函数f(x)=x2-2(a-1)x+2在区间[-1,4]上为单调函数,则a的取值范围是(-∞,0]∪[5,+∞).

分析 求出函数的对称轴,利用已知条件列出不等式求解即可.

解答 解:函数f(x)=x2-2(a-1)x+2的对称轴为:x=a-1,
函数f(x)=x2-2(a-1)x+2在区间[-1,4]上为单调函数,
可得:a-1≤-1或a-1≥4,
解得a∈(-∞,0]∪[5,+∞).
故答案为:(-∞,0]∪[5,+∞).

点评 本题考查二次函数的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.定义“等和数列”:在一个数列中,如果每一项与它后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=-1,公和为1,那么这个数列的前2 016项和S2016=1008.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=Asin(ωx-$\frac{π}{6}$)+1(A>0,ω>0)的最大值为3,其图象的相邻两条对称轴之间的距离为$\frac{π}{2}$.
(1)求函数f(x)对称中心的坐标;
(2)求函数f(x)在区间[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等差数列{an}满足:$\frac{{{a_{11}}}}{{{a_{10}}}}<-1$,且它的前n项和Sn有最大值,则当Sn取到最小正值时,n=19.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知点P是圆O外一点,过P做圆O的切线PA,PB,切点分别为A,B,过P做一条割线交圆O于E,F,若2PA=PF,取PF的中点D,连接AD,并延长交圆于H.
(1)求证:四点O,A,P,B共圆;
(2)求证:PB2=2ED×DF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆 C1:x2+y2+2x+3y+1=0,圆 C2:x2+y2+4x+3y+2=0,圆C1与圆C2的位置关系为(  )
A.外切B.相离C.相交D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若奇函数f(x)在[1,3]上是增函数,且最小值是1,则它在[-3,-1]上是(  )
A.增函数,最小值-1B.增函数,最大值-1C.减函数,最小值-1D.减函数,最大值-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若椭圆$\frac{{y}^{2}}{100}+\frac{{x}^{2}}{36}$=1上一点P到焦点F1的距离等于6,点P到另一个焦点F2的距离是(  )
A.20B.14C.4D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y2=2px(p>0)的焦点F,抛物线上一点P点横坐标为2,|PF|=3
(1)求抛物线的方程;
(2)过F且倾斜角为30°的直线交抛物线C于A,B两点,O为坐标原点,求△OAB的面积.

查看答案和解析>>

同步练习册答案