精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,四边形为平行四边形,平面.

1)若是线段的中点,求证:平面

2)若,求二面角的余弦值.

【答案】1)详见解析;(2.

【解析】

试题(1)连接,利用平行线的传递性结合得到,再利用点的中点得到,从而证明四边形为平行四边形,从而得到,最终结合直线与平面的判定定理证明平面;(2)建立以点为坐标原点,以所在直线为轴、轴、轴的空间直角坐标系,利用空间向量法来求二面角的余弦值.

试题解析:(1

由于,因此连接,由于

在平行四边形中,是线段的中点,则,且

因此,,所以四边形为平行四边形,

平面平面平面

2

平面两两垂直。

分别以所在直线为轴、轴、轴建立如图所示的空间直角坐标系

,又.

设平面的法向量

,取,得,所以

设平面的法向量,则

,取,得,所以

所以

故二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知F1F2分别是双曲线C的左、右焦点,若F2关于渐近线的对称点恰落在以F1为圆心,|OF1|为半径的圆上,则双曲线C的离心率为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中,为正三角形,点在棱上,且,点分别为棱的中点.

1)证明:平面

2)若,求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是增函数,求实数的取值范围;

(2)若函数上的最小值为3,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任利用周末时间对该班级年最后一次月考的语文作文分数进行统计,发现分数都位于之间,现将所有分数情况分为共七组,其频率分布直方图如图所示,已知.

1)求频率分布直方图中的值;

2)求该班级这次月考语文作文分数的平均数和中位数.(每组数据用该组区间中点值作为代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,底面为矩形, 平面 ,点的中点.

)求证: 平面

)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解广大学生家长对校园食品安全的认识,某市食品安全检测部门对该市家长进行了一次校园食品安全网络知识问卷调查,每一位学生家长仅有一次参加机会,现对有效问卷进行整理,并随机抽取出了200份答卷,统计这些答卷的得分(满分:100分)制出的频率分布直方图如图所示,由频率分布直方图可以认为,此次问卷调查的得分服从正态分布,其中近似为这200人得分的平均值(同一组数据用该组区间的中点值作为代表).

1)请利用正态分布的知识求

2)该市食品安全检测部门为此次参加问卷调查的学生家长制定如下奖励方案:

①得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费:

②每次获赠的随机话费和对应的概率为:

获赠的随机话费(单位:元)

概率

市食品安全检测部门预计参加此次活动的家长约5000人,请依据以上数据估计此次活动可能赠送出多少话费?

附:①;②若;则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的单调区间.

2)设直线是曲线的切线,若的斜率存在最小值-2,求的值,并求取得最小斜率时切线的方程.

3)已知分别在处取得极值,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(Ⅰ)如果存在x1x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M

(Ⅱ)如果对于任意的都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案