精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形是正方形 平面 // 的中点

1)求证:

2)求证: //平面

3)求二面角的大小.

【答案】(1)见解析;(2)见解析;(3)

【解析】试题分析:1)以为原点,分别以的方向为轴、轴、轴的正方向建立空间直角坐标系.求出相关点的坐标,通过计算,证明;(2)取的中点,连接证明然后证明平面;(3)求出平面的一个法向量,平面的法向量,利用空间向量的数量积求解二面角的余弦值.

试题解析:1)证明:依题意, 平面如图,以为原点,分别以的方向为轴、轴、轴的正方向建立空间直角坐标系.

依题意,可得 因为 ,所以

所以.

2)证明:取的中点,连接

因为

所以,所以

又因为平面 平面

所以平面

3)解:因为

所以平面,故为平面的一个法向量.

设平面的法向量为

因为

所以

,得 ,故

所以所以二面角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为的样本,得到一周参加社区服务的时间的统计数据好下表:

超过1小时

不超过1小时

20

8

12

m

(Ⅰ)求

(Ⅱ)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?

(Ⅲ)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:

x(年)

2

3

4

5

6

y(万元)

1

2.5

3

4

4.5

1)若知道yx呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,其中 ,如果函数与函数都有零点且它们的零点完全相同,则________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90100),[100110),[140150]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:

1)求分数在[120130)内的频率;

2)若在同一组数据中,将该组区间的中点值(如:组区间[100110)的中点值为=105)作为这组数据的平均分,据此,估计本次考试的平均分;

3)用分层抽样的方法在分数段为[110130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120130)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市环保部门为了让全市居民认识到冬天烧煤取暖对空气数值的影响,进而唤醒全市人民的环保节能意识。对该市取暖季烧煤天数与空气数值不合格的天数进行统计分析,得出下表数据:

(天)

9

8

7

5

4

(天)

7

6

5

3

2

(1)以统计数据为依据,求出关于的线性回归方程

2)根据(1)求出的线性回归方程,预测该市烧煤取暖的天数为20时空气数值不合格的天数.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为菱形, ,且平面平面.

(1)求证:

(2)若 ,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,证明:

2)若,且,求的取值范围;

3)若,且方程个不同的根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆E经过M(﹣10),N01),P)三点.

1)求圆E的方程;

2)若过点C22)作圆E的两条切线,切点分别是AB,求直线AB的方程.

查看答案和解析>>

同步练习册答案