【题目】如图,四边形
是正方形,
平面
,
//
,
,
,
为
的中点.
![]()
(1)求证:
;
(2)求证:
//平面
;
(3)求二面角
的大小.
【答案】(1)见解析;(2)见解析;(3)![]()
【解析】试题分析:(1)以
为原点,分别以
、
、
的方向为
轴、
轴、
轴的正方向建立空间直角坐标系.求出相关点的坐标,通过计算
,证明
;(2)取
的中点
,连接
,证明
,然后证明
平面
;(3)求出平面
的一个法向量,平面
的法向量,利用空间向量的数量积求解二面角
的余弦值.
试题解析:(1)证明:依题意,
平面
,如图,以
为原点,分别以
、
、
的方向为
轴、
轴、
轴的正方向建立空间直角坐标系.
依题意,可得
,
,
,
,
,
,
,因为
,
,所以
.
![]()
所以
.
(2)证明:取
的中点
,连接
.
因为
,
,
,
所以
,所以
.
又因为
平面
,
平面
,
所以
平面
.
(3)解:因为
,
,
,
所以
平面
,故
为平面
的一个法向量.
设平面
的法向量为
,
因为
,
,
所以
即![]()
令
,得
,
,故
.
所以
,所以二面角
的大小为
.
科目:高中数学 来源: 题型:
【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为
的样本,得到一周参加社区服务的时间的统计数据好下表:
超过1小时 | 不超过1小时 | |
男 | 20 | 8 |
女 | 12 | m |
(Ⅰ)求
,
;
(Ⅱ)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
(Ⅲ)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:
x(年) | 2 | 3 | 4 | 5 | 6 |
y(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y对x呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:
![]()
(1)求分数在[120,130)内的频率;
(2)若在同一组数据中,将该组区间的中点值(如:组区间[100,110)的中点值为
=105)作为这组数据的平均分,据此,估计本次考试的平均分;
(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市环保部门为了让全市居民认识到冬天烧煤取暖对空气
数值的影响,进而唤醒全市人民的环保节能意识。对该市取暖季烧煤天数
与空气
数值不合格的天数
进行统计分析,得出下表数据:
| 9 | 8 | 7 | 5 | 4 |
| 7 | 6 | 5 | 3 | 2 |
(1)以统计数据为依据,求出
关于
的线性回归方程
;
(2)根据(1)求出的线性回归方程,预测该市烧煤取暖的天数为20时空气
数值不合格的天数.
参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆E经过M(﹣1,0),N(0,1),P(
,
)三点.
(1)求圆E的方程;
(2)若过点C(2,2)作圆E的两条切线,切点分别是A,B,求直线AB的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com