| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
分析 先利用正三棱锥的特点,将球的内接三棱锥问题转化为球的内接正方体问题,从而将所求距离转化为正方体中,中心到截面的距离问题,利用等体积法可实现此计算.
解答 解:∵正三棱锥P-ABC,PA,PB,PC两两垂直,
∴此正三棱锥的外接球即以PA,PB,PC为三边的正方体的外接球O,
∵球O的半径为$\sqrt{3}$,
∴正方体的边长为2,即PA=PB=PC=2,
球心到截面ABC的距离即正方体中心到截面ABC的距离,
设P到截面ABC的距离为h,则正三棱锥P-ABC的体积V=$\frac{1}{3}$S△ABC×h=$\frac{1}{3}$S△PAB×PC=$\frac{1}{3}$×$\frac{1}{2}$×2×2×2=$\frac{4}{3}$,
△ABC为边长为2$\sqrt{2}$的正三角形,S△ABC=$\frac{\sqrt{3}}{4}$×(2$\sqrt{2}$)2=2$\sqrt{3}$,
∴h=$\frac{2\sqrt{3}}{3}$,
∴球心(即正方体中心)O到截面ABC的距离为$\sqrt{3}-\frac{2\sqrt{3}}{3}$=$\frac{\sqrt{3}}{3}$.
故选:C.
点评 本题主要考球的内接三棱锥和内接正方体间的关系及其相互转化,棱柱的几何特征,球的几何特征,点到面的距离问题的解决技巧,有一定难度,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | (4,5) | B. | (-2,2) | C. | (3,5) | D. | (-2,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2010}$ | B. | $\frac{1}{2011}$ | C. | $\frac{2010}{2011}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±$\frac{1}{2}$x | B. | y=±2x | C. | y=±$\frac{{\sqrt{3}}}{3}$x | D. | y=±$\sqrt{3}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com