精英家教网 > 高中数学 > 题目详情
1.在某次测量中得到的 A样本数据如下:582,584,584,586,586,586,588,588,588,588.
若B样本数据恰好是 A样本数据都加20后所得数据,则 A,B两样本的下列数字特征对应相同的是(  )
A.众数B.平均数C.中位数D.标准差

分析 利用众数、平均数、中位数与方差、标准差的定义,分别求出,即可得出答案.

解答 解:A样本数据是:582,584,584,586,586,586,588,588,588,588;
B样本数据是:602,604,604,606,606,606,608,608,608,608;
它们的众数分别为588,608,不相等;
平均数分别为586,606,也不相等;
中位数分别为586,606,也不相等;
A样本的方差为S2=$\frac{1}{10}$[(582-586)2+2×(584-586)2+3×(586-586)2+4×(588-586)2]=4,
标准差为S=2,
B样本的方差为S2=$\frac{1}{10}$[(602-606)2+2×(604-606)2+3×(606-606)2+4×(608-606)2]=4,
标准差为S=2,它们的标准差相等.
故选:D.

点评 本题考查了众数、平均数、中位数以及方差、标准差的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知命题:
①将一组数据中的每个数都变为原来的2倍,则方差也变为原来的2倍;
②命题“?x∈R,x2+x+1<0”的否定是“?x∈R,x2+x+1<0”;
③在△ABC中,若A>B,则sinA<sinB;
④在正三棱锥S-ABC内任取一点P,使得VP-ABC<$\frac{1}{2}$VS-ABC的概率是$\frac{7}{8}$;
⑤若对于任意的n∈N+,n2+(a-4)n+3+a≥0恒成立,则实数a的取值范围是[$\frac{1}{3}$,+∞).
以上命题中正确的是③④⑤(填写所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在直角三角形ABC中,∠C=90°,AB=2,AC=1,若$\overrightarrow{AD}=\frac{1}{2}\overrightarrow{AB}$,则$\overrightarrow{CD}$•$\overrightarrow{CB}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}的通项为an=log(n+1)(n+2)(n∈N*),我们把使乘积a1•a2•a3•…•an为整数的n叫做“优数”,则在(0,2015]内的所有“优数”的和为(  )
A.1024B.2012C.2026D.2036

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线l:x-my+$\sqrt{3}$m=0上存在点M满足与两点A(-1,0),B(1,0)连线的斜率kMA与kMB之积为3,则实数m的取值范围是(  )
A.$[{-\sqrt{6},\sqrt{6}}]$B.$({-∞,-\frac{{\sqrt{6}}}{6}})$∪$({\frac{{\sqrt{6}}}{6},+∞})$C.$({-∞,-\frac{{\sqrt{6}}}{6}}]$∪$[{\frac{{\sqrt{6}}}{6},+∞})$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点P(x,y)满足x2+y2≤2,则满足到直线x-y+2$\sqrt{2}$=0的距离d∈[1,3]的点P概率为(  )
A.$\frac{1}{2}$-$\frac{1}{π}$B.$\frac{1}{2}$+$\frac{1}{π}$C.$\frac{1}{4}$-$\frac{1}{2π}$D.$\frac{1}{4}$+$\frac{1}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.阅读下面的程序:
INPUT  N
I=1
S=1
WHILE 1<=N
S=S*I
I=I+1
WEND
PRINT S
END
上面的程序在执行时如果输入5,那么输出的结果为120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设计算法,表示输出1,1+2,1+2+3,1+2+3+4,…..,1+2+3+4+…+99,画出程序框图并编写程序表示.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设F1,F2分别为椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦分别为F1,F2,右顶点为A,上顶点为B,P为椭圆上在第一象限内一点,S${\;}_{△P{F}_{1}{F}_{2}}$,S${\;}_{△PA{F}_{2}}$,S${\;}_{△PB{F}_{1}}$分别为△PF1F2,△PAF2,△PBF1的面积,若S${\;}_{△P{F}_{1}{F}_{2}}$=S${\;}_{△PA{F}_{2}}$=S${\;}_{△PB{F}_{1}}$,则直线PF1的斜率为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

同步练习册答案