精英家教网 > 高中数学 > 题目详情
判断下列对应是否构成从A到B的映射.
(1)A={1,2,3},B={7,8,9},f(1)=f(2)=7,f(3)=8;
(2)A=Z,B={-1,1},n为奇数时,f(n)=-1,n为偶数时,f(n)=1;
(3)A=B={1,2,3},f(x)=2x-1;
(4)A=B={x|x≥-1},f(x)=2x+1.
考点:映射
专题:证明题,函数的性质及应用
分析:映射与函数定义类似,仅将数集改为了集合,因此下列实质是判断是否是函数.
解答: 解:(1)A={1,2,3},B={7,8,9},f(1)=f(2)=7,f(3)=8;是.
(2)A=Z,B={-1,1},n为奇数时,f(n)=-1,n为偶数时,f(n)=1;是.
(3)A=B={1,2,3},f(x)=2x-1;由f(3)=5,B中没有这个元素;故不是.
(4)A=B={x|x≥-1},f(x)=2x+1.是.
点评:映射与函数定义类似,仅将数集改为了集合,要求学生理解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
1
1n(1+x)
+
4-x2
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a5=10,a12>31,求公差d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒子装有大小相同的小球n个,在小球上分别标有1,2,3,…,n的号码,已知从盒子中随机的取出两个球,两球的号码最大值为n的概率为
1
4

(Ⅰ)盒子中装有几个小球?
(Ⅱ)现从盒子中随机的取出4个球,记记所取4个球的号码中,连续自然数的个数最大值为随机变量ξ(如取2468时,ξ=1,取1246时,ξ=2,取1235时,ξ=3).
①求P(ξ=3)的值;
②求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

一次函数的图象经过点(0,-1),(1,1),求其解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平面四边形ABCD中,D为PA的中点,PA⊥AB,CD∥AB,且PA=CD=2AB=4,将此平面四边形ABCD沿CD折成直二面角P-DC-B,连接PA、PB,设PB的中点为E,
(Ⅰ)求证:平面PBD⊥平面PBC;
(Ⅱ)求直线AB与平面PBC所成角的正弦值;
(Ⅲ)在线段BD上是否存在一点F,使得EF⊥平面PBC?若存在,请确定点F的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项之和为Sn,若S5=25且a6=11
(1)求数列{an}的通项公式;
(2)求
1
a1a3
+
1
a2a4
+
1
a3a5
+…+
1
anan-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=0.6 -
1
3
,b=sin
1
2
,c=log2.51.7,比较a、b、c大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,Sn是其前项和,若a1=1,a2=2,anan+1an+2=an+an+1+an+2且an+1an+2≠1,则a1+a2+a3=
 
;S2011=
 

查看答案和解析>>

同步练习册答案