精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,已知a5=10,a12>31,求公差d的取值范围.
考点:等差数列的通项公式
专题:等差数列与等比数列
分析:由题意可得a12=(a5-4d)2=(10-4d)2>31,解关于d的不等式可得.
解答: 解:由题意可得a12=(a5-4d)2=(10-4d)2>31,
可得-
31
<4d-10<
31

解得
10-
31
4
<d<
10+
31
4

∴公差d的取值范围为(
10-
31
4
10+
31
4
点评:本题考查等差数列的通项公式,涉及一元二次不等式的解法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知不等式ax2+bx+c>0的解集为(α,β),且0<α<β,求不等式cx2-bx+a>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(3,-1),点M,P连线的斜率为
3
4
,且|
MP
|=3,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

用两个平行平面去截半径为R的球面,两个截面圆的半径r1=24cm,r2=15cm,两截面间的距离为d=27cm,求球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设an=(1-
1
4
)(1-
1
9
)(1-
1
16
)…(1-
1
n2
)(n∈N,且n≥2)
(1)求a2,a3,a4,猜想an的化简式;
(2)用数学归纳法证明(1)的结果;
(3)设正数数列{bn}满足b1=1,bn2=2(an-
1
2
),求证:n>1时,b1+b2+b3+…+bn
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
x2+2x+1
,g(x)=
1
3
ax3-a2x,(a≠0)
(1)当x∈[0,3]时,求f(x)的值域.
(2)对任意的x1∈[0,3],总存在x2∈[0,3],使得2f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出函数f(x)=x2+1的图象,并根据图象回答下列问题::
(1)比较f(-2),f(1),f(3)的大小;
(2)若0<x1<x2(或x1<x2<0,或|x1|<|x2|)比较f(x1)与f(x2)的大小;
(3)分别写出函数f(x)=x2+1(x∈(-1,2]),f(x)=x2+1(x∈(1,2])的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列对应是否构成从A到B的映射.
(1)A={1,2,3},B={7,8,9},f(1)=f(2)=7,f(3)=8;
(2)A=Z,B={-1,1},n为奇数时,f(n)=-1,n为偶数时,f(n)=1;
(3)A=B={1,2,3},f(x)=2x-1;
(4)A=B={x|x≥-1},f(x)=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-2x2+3x-1的单调递增区间是
 

查看答案和解析>>

同步练习册答案