精英家教网 > 高中数学 > 题目详情
20.已知直线l:x+my+6=0,若点A(-5,1)到直线l的距离为$\sqrt{2}$,则实数m的值为1.

分析 根据点到直线的距离公式,代入计算即可.

解答 解:根据点到直线的距离公式,d=$\frac{|-5+m+6|}{\sqrt{1+{m}^{2}}}$=$\sqrt{2}$,解得m=1,
故答案为:1.

点评 本题考查了点到直线的距离公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设关于x的一元二次方程ax2+x+1=0(a>0)有两个实根x1,x2
(Ⅰ)求(1+x1)(1+x2)的值;
(Ⅱ)求证x1<-1且x2<-1;
(Ⅲ)如果$\frac{x_1}{x_2}∈[{\frac{1}{10},10}]$,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了解某市今年初二年级男生的身体素质状况,从该市初二年级男生中抽取了一部分学生进行“掷实心球”的项目测试.成绩低于6米为不合格,成绩在6至8米(含6米不含8米)的为及格,成绩在8米至12米(含8米和12米,假定该市初二学生掷实心球均不超过12米)为优秀.把获得的所有数据,分成[2,4),[4,6),[6,8),[8,10),[10,12]五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在10米到12米之间.
(1)求实数a的值及参加“掷实心球”项目测试的人数;
(2)根据此次测试成绩的结果,试估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率;
(3)若从此次测试成绩不合格的男生中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=4sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为π,设向量$\overrightarrow{a}$=(-1,f(x)),$\overrightarrow{b}$=(f(-x),1),g(x)=$\overrightarrow{a}•\overrightarrow{b}$.
(1)求函数f(x)的递增区间;
(2)求函数g(x)在区间[$\frac{π}{8}$,$\frac{π}{3}$]上的最大值和最小值;
(3)若x∈[0,2015π],求满足$\overrightarrow{a}⊥\overrightarrow{b}$的实数x的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知一段演绎推理:“一切奇数都能被3整除,(25+1)是奇数,所以(25+1)能被3整除”,则这段推理的 (  )
A.大前提错误B.小前提错误C.推理形式错误D.结论错误

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某地一天6时至20时的温度y(°C)随时间x(小时)的变化近似满足函数y=10sin($\frac{π}{8}$x+$\frac{3π}{4}$)+20,x∈[6,20].在上述时间范围内,温度不低于20°C的时间约有8小时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示(如图),
s1,s2分别表示甲、乙选手的标准差,则s1与s2的关系是(  )
A.s1<s2B.s1=s2C.s1>s2D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在极坐标系中,P,Q是曲线ρ=2sinθ上任意两点.则线段PQ长度的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.类比平面内的性质“平行于同一条直线的两条直线互相平行”,可得出空间内的下列结论:①平行于同一条直线的两个平面互相平行;②平行于同一个平面的两条直线互相平行;③平行于同一个平面的两个平面互相平行;④平行于同一条直线的两条直线互相平行.其中正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案